Skip to main content
Log in

Higher-Dimensional Nonlinear Thermodynamic Formalism

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a higher-dimensional version of the nonlinear thermodynamic formalism introduced by Buzzi and Leplaideur, in which a potential is replaced by a family of potentials. In particular, we establish a corresponding variational principle and we discuss the existence, characterization, and number of equilibrium measures for this higher-dimensional version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dyn. Syst. 16, 871–927 (1996)

    Article  MathSciNet  Google Scholar 

  2. Barreira, L.: Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics, vol. 294. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  3. Barreira, L., Saussol, B., Schmeling, J.: Higher-dimensional multifractal analysis. J. Math. Pures Appl. 81, 67–91 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  5. Bowen, R.: Some systems with unique equilibrium states. Math. Systems Theory 8, 193–202 (1974/75)

  6. Bowen, R.: Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    Book  Google Scholar 

  7. Buzzi, J., Leplaideur, R.: Nonlinear thermodynamical formalism (2020). arXiv:2002.00576v2

  8. Buzzi, J., Kloeckner, B., Leplaideur, R.: Nonlinear thermodynamical formalism (2021). arXiv:2002.00576v3

  9. Constantine, D., Lafont, J.-F., Thompson, D.: The weak specification property for geodesic flows on CAT(-1) spaces. Groups Geom. Dyn. 14, 297–336 (2020)

    Article  MathSciNet  Google Scholar 

  10. Eizenberg, A., Kifer, Y., Weiss, B.: Large deviations for \(Z^{d}\)-actions. Commun. Math. Phys. 164, 433–454 (1994)

    Article  Google Scholar 

  11. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics, Grundlehren der mathematischen Wissenschaften, vol. 271. Springer, New York (1985)

    Book  Google Scholar 

  12. Ellis, R., Wang, K.: Limit theorems for the empirical vector of the Curie-Weiss-Potts model. Stoch. Process. Appl. 35, 59–79 (1990)

    Article  MathSciNet  Google Scholar 

  13. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems. A Concrete Mathematical Introduction, Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  14. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Keller, G.: Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts, vol. 42. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  16. Leplaideur, R.: Chaos: butterflies also generate phase transitions. J. Stat. Phys. 161, 151–170 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  17. Leplaideur, R., Watbled, F.: Generalized Curie-Weiss model and quadratic pressure in ergodic theory. Bull. Soc. Math. France 147, 197–219 (2019)

    Article  MathSciNet  Google Scholar 

  18. Leplaideur, R., Watbled, F.: Generalized Curie-Weiss-Potts model and quadratic pressure in ergodic theory. J. Stat. Phys. 181, 263–292 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  19. Misiurewicz, M.: A short proof of the variational principle for a \(\mathbb{Z}_{+}^{N}\) action on a compact space. In: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), Astérisque, No. 40, Soc. Math. France, Paris, pp. 147–157 (1976)

  20. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990)

  21. Pesin, Ya.: Dimension Theory in Dynamical Systems. Contemporary Views and Applications. Chicago Lectures in Mathematics, University of Chicago Press, Chicago (1997)

    Book  Google Scholar 

  22. Pesin, Ya., Pitskel’, B.: Topological pressure and the variational principle for noncompact sets, Functional. Anal. Appl. 18, 307–318 (1984)

    MATH  Google Scholar 

  23. Pfister, C.-E., Sullivan, W.: Large deviations estimates for dynamical systems without the specification property. Applications to the \(\beta \)-shifts. Nonlinearity 22, 237–261 (2005)

    Article  MathSciNet  Google Scholar 

  24. Ruelle, D.: Statistical mechanics on a compact set with \({{\mathbb{Z}}}^\nu \) action satisfying expansiveness and specification. Trans. Am. Math. Soc. 185, 237–251 (1973)

    Article  MathSciNet  Google Scholar 

  25. Ruelle, D.: Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications, vol. 5. Addison-Wesley Publishing Co., Reading (1978)

  26. Thaler, M., Maximilian: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Isr. J. Math. 37, 303–314 (1980)

    Article  MathSciNet  Google Scholar 

  27. Viana, M., Oliveira, K.: Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 151. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  28. Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math. 97, 937–971 (1976)

    Article  MathSciNet  Google Scholar 

  29. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79. Springer, New York (1982)

    Book  Google Scholar 

  30. Wolf, C.: A shift map with a discontinuous entropy function. Discret. Contin. Dyn. Syst. 40, 319–329 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for the carefully reading of our work and for the constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

Communicated by Peter Balint.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by FCT/Portugal through CAMGSD, IST-ID, Projects UIDB/04459/2020 and UIDP/04459/2020. C.H. was supported by FCT/Portugal through the grant PD/BD/135523/2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreira, L., Holanda, C. Higher-Dimensional Nonlinear Thermodynamic Formalism. J Stat Phys 187, 18 (2022). https://doi.org/10.1007/s10955-022-02916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02916-4

Keywords

Mathematics Subject Classification

Navigation