Skip to main content
Log in

Renormalization of Symmetric Bimodal Maps with Low Smoothness

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper deals with the renormalization of symmetric bimodal maps with low smoothness. We prove the existence of the renormalization fixed point in the space \(C ^{1+Lip}\) symmetric bimodal maps. Moreover, we show that the topological entropy of the renormalization operator defined on the space of \(C^{1+Lip}\) symmetric bimodal maps is infinite. Further we prove the existence of a continuum of fixed points of renormalization. Consequently, this proves the non-rigidity of the renormalization of symmetric bimodal maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Feigenbaum, M.J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 (1978)

    Article  ADS  Google Scholar 

  2. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21, 669–706 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  3. Coullet, P., Tresser, C.: Itération d’endomorphisms et groupe de renormalisation. J. Phys. Colloque C5, 25–28 (1978)

    MATH  Google Scholar 

  4. Sullivan, D.: Bounds, quadratic differentials, and renormalization conjectures. A.M.S. Centen. Publ. Math. Twenty-first Century 2, 417–466 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Hu, J.: Renormalization, rigidity and universality in bifurcation theory, PhD thesis, City University of New York, pp. 1–156 (1995)

  6. McMullen, C.T.: Renormalization and 3-Manifolds Which Fiber over the Circle, vol. 142. Princeton University Press (1996)

  7. Martens, M.: The periodic points of renormalization. Ann. Math. 147, 543–584 (1998)

    Article  MathSciNet  Google Scholar 

  8. Lyubich, M.: Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Ann. Math. 2(149), 319–420 (1999)

    Article  MathSciNet  Google Scholar 

  9. Davie, A.M.: Period doubling for \(C^{2+\epsilon }\) mappings. Commun. Math. Phys. 176, 262–272 (1999)

    Google Scholar 

  10. de Faria, E., de Melo, W., Pinto, A.: Global hyperbolicity of renormalization for \(C^r\) unimodal mappings. Ann. Math. 2(164), 731–824 (2006)

    Article  Google Scholar 

  11. Chandramouli, V. V. M. S., Martens, M., Melo, W. de., Tresser, C. P.: Chaotic period doubling. Ergod. Theory Dyn. Syst. 29, 381–418 (2009)

  12. Kozlovski, O., van Strien, S.: Asymmetric unimodal maps with non-universal period-doubling scaling laws. Commun. Math. Phys. 379, 103–143 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Herman, M.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Pub. Math. I.H.E.S 49, 5–233 (1979)

    Article  Google Scholar 

  14. Yoccoz, J. C.: Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Annales scientifiques de l’École Normale Supérieure, 4e série, 17, 333—359, (1984)

  15. Khanin, K.M., Sinai, Y.G.: A new proof of M. Herman’s theorem. Commun. Math. Phys. 112, 89–101 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yampolsky, M.: The attractor of renormalization and rigidity of towers of critical circle maps. Commun. Math. Phys. 218, 537–568 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Khanin, K.M., Kocić, S.: Absence of robust rigidity for circle maps with breaks. Ann. Inst. H. Poincaré, Anal. Non Linéaire 30, 385–399 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Khanin, K.M., Teplinsky, A.: Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks. Commun. Math. Phys. 320, 347–377 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Khanin, K.M., Kocić, S., Mazzeo, E.: \(C^1\)-rigidity of circle maps with breaks for almost all rotation numbers. Ann. Sci. Éc. Norm. Supér 4(50), 1163–1203 (2017)

    Article  Google Scholar 

  20. Khanin, K.M., Kocić, S.: Robust local Hölder rigidity of circle maps with breaks. Ann. Inst. H. Poincaré, Anal. Non Linéaire 35, 1827–1845 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cunha, K., Smania, D.: Rigidity for piecewise smooth homeomorphisms on the circle. Adv. Math. 250, 193–226 (2014)

    Article  MathSciNet  Google Scholar 

  22. Akhadkulov, H., Noorani, M.S.M., Akhatkulov, S.: Renormalizations of circle diffeomorphisms with a break-type singularity. Nonlinearity 30, 2687–2717 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. de Melo, W., Pinto, A.: Rigidity of \(C^2\) infinitely renormalizable unimodal maps. Commun. Math. Phys. 208, 91–105 (1999)

    Article  ADS  Google Scholar 

  24. Lyubich, M.: Almost every real quadratic map is either regular or stochastic. Ann. Math. 2(156), 1–78 (2002)

    Article  MathSciNet  Google Scholar 

  25. Avila, A., Lyubich, M., de Melo, W.: Regular or stochastic dynamics in real analytic families of unimodal maps. Invent. Math. 154, 451–550 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bruin, H., Shen, W., Strien, S.V.: Existence of unique SRB-measures is typical for real unicritical polynomial families. Ann. Sci. École Norm. Sup. 4(39), 381–414 (2006)

    Article  MathSciNet  Google Scholar 

  27. Moreira, C.S., Smania, D.: Metric stability for random walks (with applications in renormalization theory), frontiers in complex dynamics. Princeton Math. Ser. 51, 261–322 (2014)

    MATH  Google Scholar 

  28. Bruin, H., Todd, M.: Wild attractors and thermodynamic formalism. Monatsh Math. 178, 39–83 (2015)

    Article  MathSciNet  Google Scholar 

  29. Carvalho, A.D., Lyubich, M., Martens, M.: Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys. 121, 611–669 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hazard, P.E., Lyubich, M., Martens, M.: Renormalizable H’enon-like maps and unbounded geometry. Nonlinearity 25, 397–420 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. Martens, M., Winckler, B.: On the hyperbolicity of Lorenz renormalization. Commun. Math. Phys. 325, 185–257 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Martens, M., Winckler, B.: Physical measures for infinitely renormalizable Lorenz maps. Ergod. Theory Dyn. Syst. 38, 717–738 (2018)

    Article  MathSciNet  Google Scholar 

  33. Jonkar, L., Rand, D.: Bifurcations in one dimension I. The nonwandering set. Invent. Math. 62, 347–365 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  34. Strien, S. V.: Smooth dynamics on the interval. In: Bedford, T., Swift, J. (eds.) New Directions in Dynamical Systems, pp. 57–119. Cambridge Univ. Press, Cambridge (1988)

  35. Mackay, R.S., Tresser, C.: Transition to topological chaos for circle maps. Physica D 19, 206–237 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. Mackay, R.S., van Zeijts, J.B.J.: Period doubling for bimodal maps: a horseshoe for a renormalization operator. Nonlinearity 1, 253–277 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. Veitch, D.: Renormalization of \(C^{0}\) bimodal maps. Physica D 71, 269–284 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  38. Smania, D.: Complex bounds for multimodal maps: bounded combinatorics. Nonlinearity 14, 1311–1330 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. Smania, D.: Phase space universality for multimodal maps. Bull. Braz. Math. Soc. 36, 225–274 (2005)

    Article  MathSciNet  Google Scholar 

  40. Smania, D.: Solenoidal attractors with bounded combinatorics are shy. Ann. Math. (2) 191, 1–79 (2020)

    Article  MathSciNet  Google Scholar 

  41. Kumar, R., Chandramouli, V. V. M. S.: Period tripling and quintupling renormalizations below \(C^2\) space, preprint, arXiv:2010.01293 [math.DS] (2020)

  42. Tresser, C.: Fine structure of universal Cantor sets. In: Tirapegui, E., Zeller, W. (eds.) Instabilities and Nonequilibrium Structures III, pp. 27–42. Kluwer, Dordrecht/Boston/London (1991)

  43. de Melo, W., Strien, S.V.: One-Dimensional Dynamics. Springer, Berlin (1993)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for the useful comments and suggestions to improve the manuscript. We are grateful to the referees for their valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. M. S. Chandramouli.

Additional information

Communicated by Peter Balint.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chandramouli, V.V.M.S. Renormalization of Symmetric Bimodal Maps with Low Smoothness. J Stat Phys 183, 29 (2021). https://doi.org/10.1007/s10955-021-02764-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02764-8

Keywords

Mathematics Subject Classification

Navigation