Skip to main content
Log in

Gaussian Concentration and Uniqueness of Equilibrium States in Lattice Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider equilibrium states (that is, shift-invariant Gibbs measures) on the configuration space \(S^{{\mathbb {Z}}^d}\) where \(d\ge 1\) and S is a finite set. We prove that if an equilibrium state for a shift-invariant uniformly summable potential satisfies a Gaussian concentration bound, then it is unique. Equivalently, if there exist several equilibrium states for a potential, none of them can satisfy such a bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the class of potentials we consider, shift-invariant Gibbs measures coincide with equilibrium states [21, Theorem 4.2].

  2. Let \(f\ge 0\) be an integrable function on a probability space \(({\mathcal {X}},\Sigma ,\mu )\). If \(\int f \mathop {}\!\mathrm {d}\mu \le \rho ^2\) then \(f(x)\le \rho \), except for a set of measure at most \(\rho \).

References

  1. Borgs, C.: Translation symmetry breaking in four dimensional lattice gauge theories. Commun. Math. Phys. 96, 251–284 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  3. Bullen, P.: Dictionary of Inequalities. Monographs and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton (2015)

  4. Chazottes, J.-R., Collet, P., Külske, C., Redig, F.: Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields 137(1–2), 201–225 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chazottes, J.-R., Collet, P., Redig, F.: On concentration inequalities and their applications for Gibbs measures in lattice systems. J. Stat. Phys. 169(3), 504–546 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chazottes, J.-R., Gallo, S., Takahashi, D.: Optimal Gaussian concentration bounds for stochastic chains of unbounded memory. Preprint (2019)

  7. Dobrushin, R.L., Shlosman, S.: Completely analytical Gibbs fields. In: Statistical Physics and Dynamical Systems (Köszeg, 1984). Progress in Physics, vol. 10, pp. 371–403. Birkhäuser, Boston (1985)

  8. Dobrushin, R.L., Shlosman, S.: Completely analytical interactions: constructive description. J. Stat. Phys. 46(5–6), 983–1014 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  10. Eizenberg, A., Kifer, Y., Weiss, B.: Large deviations for \(\mathbb{Z}^d\) actions. Commun. Math. Phys. 164, 433–454 (1994)

    Article  ADS  Google Scholar 

  11. Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. Classics in Mathematics. Springer, Berlin (2006)

    Book  Google Scholar 

  12. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  13. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter, Berlin (2011)

    Book  Google Scholar 

  14. Keller, G.: Equilibrium States in Ergodic Theory. London Mathematical Society Student Texts, vol. 42. Cambridge University Press, Cambridge (1998)

  15. Külske, C.: Concentration inequalities for functions of Gibbs fields with applications to diffraction and random Gibbs measures. Commun. Math. Phys. 239, 29–51 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Le Ny, A.: Gibbs Measures for Long-Range Ising Models (2019). arXiv:1911.01860 [math-ph]

  17. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Martinelli, F., Olivieri, E., Schonmann, R.H.: For 2-D lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165(1), 33–47 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  19. Marton, K., Shields, P.: The positive-divergence and blowing-up properties. Isr. J. Math. 86(1–3), 331–348 (1994)

    Article  MathSciNet  Google Scholar 

  20. Moles, J.: On concentration inequalities for lattice systems and thermodynamic formalism. PhD thesis, Institut Polytechnique de Paris (2020)

  21. Ruelle, D.D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge University Press, Cambridge (2004)

  22. Stroock, D., Zegarliński, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition. Commun. Math. Phys. 144(2), 303–323 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Stroock, D., Zegarliński, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149(1), 175–193 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  24. van den Berg, J., Steif, J.: On the existence and nonexistence of finitary codings for a class of random fields. Ann. Probab. 27(3), 1501–1522 (1999)

    Article  MathSciNet  Google Scholar 

  25. Wainwright, M.: High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, Cambridge (2019)

Download references

Acknowledgements

We thank Pierre Collet for stimulating discussions. The authors also thank the anonymous referee for very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-R. Chazottes.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1 An Estimate

We first recall Young’s inequality for convolutions [3, p. 316]. Let and . Formally define their convolution by

If and , where \(p,q\ge 1\), then where \(r\ge 1\) is such that \(1+r^{-1}=p^{-1}+q^{-1}\), then we have

Lemma A.1

Let \(f:\Omega \rightarrow {\mathbb {R}}\) such that . Then for any \(\Lambda \Subset {\mathbb {Z}}^d\) we have

Proof

Since \(\delta _z(S_\Lambda f)\le \sum _{x\in \Lambda }\delta _{z-x}(f)\), we apply Young’s inequality with \(r=2, p=2,q=1\), \(u_x=\mathbb {1}_{\Lambda }(x)\), and \(v_x=\delta _x(f)\) to get the desired estimate. \(\square \)

1.2 A.2 Proof Lemma 4.1

The version of this lemma in dimension \(d=1\) is stated without proof in [19]. Since it is not completely obvious, we give it here for any \(d\ge 1\).

We fix \(\varepsilon >0\) and \(k\ge 0\). The frequency of a pattern \(p_k\in S^{\Lambda _k}\) in \(\omega \) (see (14)) can rewritten as

$$\begin{aligned} {\mathfrak {f}}_{n,k}(\omega ;p_k)=\frac{1}{(2(n-k)+1)^d} \sum _{x\in \Lambda _{n-k}} \mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}}. \end{aligned}$$

By definition we have

$$\begin{aligned}&\Vert {\mathfrak {f}}_{n,k}(\omega ;\cdot )- {\mathfrak {f}}_{n,k}(\eta ;\cdot )\Vert _{{\scriptscriptstyle \mathrm {TV}}}=\nonumber \\&\frac{1}{2(2(n-k)+1)^d}\sum _{p_k \in S^{ \Lambda _k}} \left| \sum _{x\in \Lambda _{n-k}} \big (\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} -\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big )\right| . \end{aligned}$$
(22)

Letting

$$\begin{aligned} {\mathcal {I}}_{\omega ,\eta ,n}=\big \{ x\in \Lambda _{n-k}: (\theta _x \omega )_{ \Lambda _k}=(\theta _x \eta )_{ \Lambda _k}\big \} \end{aligned}$$

we get

$$\begin{aligned}&\sum _{p_k \in S^{ \Lambda _k}}\left| \sum _{x\in \Lambda _{n-k}} \big (\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} -\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big )\right| \\&\quad = \sum _{p_k \in S^{ \Lambda _k}} \left| \sum _{x\in {\mathcal {I}}_{\omega ,\eta ,n}^c} \big (\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} -\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big )\right| \\&\quad \le \sum _{p_k \in S^{ \Lambda _k}} \sum _{x\in {\mathcal {I}}_{\omega ,\eta ,n}^c} \big |\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} -\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big |\\&\quad \le \sum _{p_k \in S^{ \Lambda _k}} \sum _{x\in {\mathcal {I}}_{\omega ,\eta ,n}^c} \big (\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} +\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big )\\&\quad = \sum _{x\in {\mathcal {I}}_{\omega ,\eta ,n}^c} \sum _{p_k \in S^{ \Lambda _k}}\big (\mathbb {1}_{\{(\theta _x \omega )_{ \Lambda _k}=p_k\}} +\mathbb {1}_{\{(\theta _x \eta )_{ \Lambda _k}=p_k\}}\big )\\&\quad = 2 \,\big | {\mathcal {I}}_{\omega ,\eta ,n}^c\big |. \end{aligned}$$

Hence we obtain from (22)

$$\begin{aligned} \Vert {\mathfrak {f}}_{n,k}(\omega ;\cdot )- {\mathfrak {f}}_{n,k}(\eta ;\cdot )\Vert _{{\scriptscriptstyle \mathrm {TV}}} \le \frac{\big | {\mathcal {I}}_{\omega ,\eta ,n}^c\big |}{(2(n-k)+1)^d}. \end{aligned}$$
(23)

We now look for an upper bound for \(\big | {\mathcal {I}}_{\omega ,\eta ,n}^c\big |\). If \((\theta _x \omega )_{ \Lambda _k}=p_k\) and \((\theta _x \eta )_{ \Lambda _k}\ne p_k\), then \(\omega _y\ne \eta _y\) for at least one site \(y\in \Lambda _k+x\). Such a y can produce as many as \((2k+1)^d\) sites such that \((\theta _x \omega )_{ \Lambda _k}=p_k\) and \((\theta _x \eta )_{ \Lambda _k}\ne p_k\). Hence

$$\begin{aligned} \big | {\mathcal {I}}_{\omega ,\eta ,n}^c\big |&\le (2k+1)^d \,\big |\{x\in \Lambda _{n-k}: \omega _x\ne \eta _x \}\big | \\&\le (2k+1)^d \, \big |\{x\in \Lambda _{n}: \omega _x\ne \eta _x \}\big | \\&\le (2k+1)^d \, \bar{\mathrm {d}}_{ \Lambda _n}(\omega ,\eta ). \end{aligned}$$

Hence (23) yields

$$\begin{aligned} \Vert {\mathfrak {f}}_{n,k}(\omega ;\cdot )- {\mathfrak {f}}_{n,k}(\eta ;\cdot )\Vert _{{\scriptscriptstyle \mathrm {TV}}} \le \frac{(2k+1)^d}{(2(n-k)+1)^d} \,\bar{\mathrm {d}}_{ \Lambda _n}(\omega ,\eta ). \end{aligned}$$

Obviously there exists \(\breve{N}>k\) such that for all \(n\ge \breve{N}\) we have

$$\begin{aligned} \left( \frac{2n+1}{2(n-k)+1}\right) ^d\le \frac{5}{4} \end{aligned}$$

therefore, if we take

$$\begin{aligned} \bar{\mathrm {d}}_{ \Lambda _n}(\omega ,\eta )\le \frac{2\varepsilon }{5(2k+1)^d}\, (2n+1)^d \end{aligned}$$

we finally obtain

$$\begin{aligned} \Vert {\mathfrak {f}}_{n,k}(\omega ;\cdot )- {\mathfrak {f}}_{n,k}(\eta ;\cdot )\Vert _{{\scriptscriptstyle \mathrm {TV}}} \le \frac{\varepsilon }{2} \end{aligned}$$

for all \(n\ge \breve{N}\), which concludes the proof of the lemma.

1.3 A.3 A Bound on Relative Entropy

Recall that ‘\(\log \)’ stands for the natural logarithm. We were not able to find a reference for a proof of the following estimate, so we prove it for the reader’s convenience.

Lemma A.2

Let \(\nu \) and \(\mu \) be probability measures on a finite set A. Then

$$\begin{aligned} \sum _{a\,\in A} \nu (\{a\}) \left| \log \frac{\nu (\{a\})}{\mu (\{a\})}\right| \le H(\nu |\mu )+\frac{2}{{{\,\mathrm{\mathrm {e}}\,}}} \end{aligned}$$
(24)

where

$$\begin{aligned} H(\nu |\mu )=\sum _{a\,\in A} \nu (\{a\}) \log \frac{\nu (\{a\})}{\mu (\{a\})}. \end{aligned}$$

Proof

Define

$$\begin{aligned} A^{\scriptscriptstyle {-}}=\left\{ a\in A: \log \frac{\nu (\{a\})}{\mu (\{a\})}<0\right\} . \end{aligned}$$

Now

$$\begin{aligned} \sum _{a\,\in A} \nu (\{a\}) \left| \log \frac{\nu (\{a\})}{\mu (\{a\})}\right|&= \sum _{a\,\in A\backslash A^{\scriptscriptstyle {-}}} \nu (\{a\}) \log \frac{\nu (\{a\})}{\mu (\{a\})} + \sum _{a\,\in A^{\scriptscriptstyle {-}}} \nu (\{a\}) \log \frac{\mu (\{a\})}{\nu (\{a\})}\\&= H(\nu |\mu )+ 2\sum _{a\,\in A^{\scriptscriptstyle {-}}} \nu (\{a\}) \log \frac{\mu (\{a\})}{\nu (\{a\})}. \end{aligned}$$

By the concavity of the logarithm function and Jensen’s inequality we get

$$\begin{aligned} \sum _{a\,\in A^{\scriptscriptstyle {-}}} \nu (\{a\}) \log \frac{\mu (\{a\})}{\nu (\{a\})}&= \nu (A^{\scriptscriptstyle {-}}) \sum _{a\,\in A^{\scriptscriptstyle {-}}} \frac{\nu (\{a\})}{\nu (A^{\scriptscriptstyle {-}}) } \log \frac{\mu (\{a\})}{\nu (\{a\})}\\&\le \nu (A^{\scriptscriptstyle {-}}) \log \left( \frac{\mu (A^{\scriptscriptstyle {-}})}{\nu (A^{\scriptscriptstyle {-}})}\right) \\&\le \nu (A^{\scriptscriptstyle {-}}) \log \left( \frac{1}{\nu (A^{\scriptscriptstyle {-}})}\right) \le {{\,\mathrm{\mathrm {e}}\,}}^{-1} \end{aligned}$$

where we used the elementary inequality \(-x\log x\le {{\,\mathrm{\mathrm {e}}\,}}^{-1}\),\(x\ge 0\). Therefore we arrive at (24). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chazottes, JR., Moles, J., Redig, F. et al. Gaussian Concentration and Uniqueness of Equilibrium States in Lattice Systems. J Stat Phys 181, 2131–2149 (2020). https://doi.org/10.1007/s10955-020-02658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02658-1

Keywords

Navigation