Skip to main content
Log in

Short-Distance Symmetry of Pair Correlations in Two-Dimensional Jellium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the two-dimensional one-component plasma (jellium) of mobile pointlike particles with the same charge e, interacting pairwisely by the logarithmic Coulomb potential and immersed in a fixed neutralizing background charge density. Particles are in thermal equilibrium at the inverse temperature \(\beta \), the only relevant dimensionless parameter is the coupling constant \(\varGamma \equiv \beta e^2\). In the bulk fluid regime and for any value of the coupling constant \(\varGamma =2\times \mathrm{integer}\), Šamaj and Percus (J Stat Phys 80:811–824, 1995) have derived an infinite sequence of sum rules for the coefficients of the short-distance expansion of particle pair correlation function. In the context of the equivalent fractional quantum Hall effect, by using specific methods of quantum geometry Haldane (Phys Rev Lett 107:116801, 2011; arXiv:1112.0990v2, 2011) derived a self-dual relation for the Landau-level guiding-center structure factor. In this paper, we establish the relation between the guiding-center structure factor and the pair correlation function of jellium particles. It is shown that the self-dual formula, which provides an exact relation between the pair correlation function and its Fourier component, comes directly from the short-distance symmetry of the bulk jellium. The short-distant symmetry of pair correlations is extended to the semi-infinite geometry of a rectilinear plain hard wall with a fixed surface charge density, constraining particles to a half-space. The symmetry is derived for the original jellium model as well as its simplified version with no background charge (charged wall surface with “counter-ions only”). The obtained results are checked at the exactly solvable free-fermion coupling \(\varGamma =2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42, 1–12 (1981)

    Article  MathSciNet  Google Scholar 

  2. Baus, M.: On the compressibility of a one-component plasma. J. Phys. A 11, 2451–2462 (1978)

    Article  ADS  Google Scholar 

  3. Baus, M., Hansen, J.P.: Statistical mechanics of simple Coulomb systems. Phys. Rep. 59, 1–94 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. Di Francesco, P., Gaudin, M., Itzykson, C., Lesage, F.: Laughlin’s wave functions, Coulomb gases and expansions of the discriminant. Int. J. Mod. Phys. A 9, 4257–4351 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Forrester, P.J.: Exact results for two-dimensional Coulomb systems. Phys. Rep. 301, 235–270 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic Press, London (1994)

    MATH  Google Scholar 

  7. Haldane, F.D.M.: Geometrical description of the fractional quantum Hall effect. Phys. Rev. Lett. 107, 116801 (2011)

    Article  ADS  Google Scholar 

  8. Haldane, F.D.M.: Self-duality and long-wavelength behavior of the Landau-level guiding-center structure function, and the shear modulus of fractional quantum Hall fluids. arXiv:1112.0990v2 (2011)

  9. Jancovici, B.: Pair correlation function in a dense plasma and pycnonuclear reactions in stars. J. Stat. Phys. 17, 357–370 (1977)

    Article  ADS  Google Scholar 

  10. Jancovici, B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 386–388 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jancovici, B.: Classical Coulomb systems near a plane wall. I. J. Stat. Phys. 28, 43–65 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jancovici, B.: Surface properties of a classical two-dimensional one-component plasma: exact results. J. Stat. Phys. 34, 803–815 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)

    Google Scholar 

  14. Kalinay, P., Markoš, P., Šamaj, L., Travěnec, I.: The sixth-moment sum rule for the pair correlations of the two-dimensional one-component plasma: exact result. J. Stat. Phys. 98, 639–666 (2000)

    Article  MathSciNet  Google Scholar 

  15. Martin, Ph.A.: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. Prange, R.E., Girvin, S.M.: The Quantum Hall Effect. Springer, New York (1987)

    Book  Google Scholar 

  17. Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? J. Stat. Phys. 117, 131–158 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Šamaj, L.: A generalization of the Stillinger–Lovett sum rules for the two-dimensional jellium. J. Stat. Phys. 128, 1415–1428 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  20. Šamaj, L., Kalinay, P., Travěnec, I.: An invariant structure of the multi-particle correlations of the two-dimensional one-component plasma. J. Phys. A 31, 4149–4166 (1998)

    Article  ADS  Google Scholar 

  21. Stillinger, F.H., Lovett, R.: Ion-pair theory of concentrated electrolytes. I. Basic concepts. J. Chem. Phys. 48, 3858 (1968)

    Article  ADS  Google Scholar 

  22. Stillinger, F.H., Lovett, R.: General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49, 1991 (1968)

    Article  ADS  Google Scholar 

  23. Vieillefosse, P.: Sum rules and perfect screening conditions for the one-component plasma. J. Stat. Phys. 41, 1015–1035 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  24. Vieillefosse, P., Hansen, J.P.: Statistical mechanics of dense ionized matter. V. Hydrodynamic limit and transport coefficients of the classical one-component plasma. Phys. Rev. A 12, 1106–1116 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Prof. Duncan Haldane for pointing out my attention to the guiding-center structure function within the fractional quantum Hall fluids. The support received from the project EXSES APVV-16-0186 and VEGA Grant No. 2/0003/18 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Šamaj.

Additional information

Communicated by Giulio Biroli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šamaj, L. Short-Distance Symmetry of Pair Correlations in Two-Dimensional Jellium. J Stat Phys 178, 247–264 (2020). https://doi.org/10.1007/s10955-019-02430-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02430-0

Keywords

Navigation