Skip to main content
Log in

Non-compact Quantum Spin Chains as Integrable Stochastic Particle Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss a family of models of particle and energy diffusion on a one-dimensional lattice, related to those studied previously in Sasamoto and Wadati (Phys Rev E 58:4181–4190, 1998), Barraquand and Corwin (Probab Theory Relat Fields 167(3–4):1057–1116, 2017) and Povolotsky (J Phys A 46(46):465205, 2013) in the context of KPZ universality class. We show that they may be mapped onto an integrable \({\mathfrak {sl}}(2)\) Heisenberg spin chain whose Hamiltonian density in the bulk has been already studied in the AdS/CFT and the integrable system literature. Using the quantum inverse scattering method, we study various new aspects, in particular we identify boundary terms, modeling reservoirs in non-equilibrium statistical mechanics models, for which the spin chain (and thus also the stochastic process) continues to be integrable. We also show how the construction of a “dual model” of probability theory is possible and useful. The fluctuating hydrodynamics of our stochastic model corresponds to the semiclassical evolution of a string that derives from correlation functions of local gauge invariant operators of \(\mathcal {N}=4\) super Yang–Mills theory (SYM), in imaginary-time. As any stochastic system, it has a supersymmetric completion that encodes for the thermal equilibrium theorems: we show that in this case it is equivalent to the \({\mathfrak {sl}}(2|1)\) superstring that has been derived directly from \(\mathcal {N}=4\) SYM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A formula for the Hamiltonian density in terms of the the two site Casimir \(C_{i,i+1}\) has been discussed in [29, 30].

  2. This may be seen directly by making the change of variables \(\bar{\eta } \rightarrow -2\bar{\xi } \), \( \eta \rightarrow \xi \) for fermions, \(\hat{\rho } \rightarrow 2\tilde{\rho }\) for the response field and \(S \rightarrow 2S\) for the action. Note that our \(\rho \) is not theirs, which is the ‘radial’ coordinate of the hyperboloid.

References

  1. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27(1), 65–74 (1982)

    ADS  MathSciNet  Google Scholar 

  2. Giardina, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48(3), 033301 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135(1), 25–55 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bethe, H.: Zur Theorie der Metalle. Zeitschrift für Physik 71(3), 205–226 (1931)

    ADS  MATH  Google Scholar 

  5. Lipatov, L.N.: Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models. JETP Lett. 59, 596–599 (1994). [Pisma Zh. Eksp. Teor. Fiz.59,571(1994)]

    ADS  Google Scholar 

  6. Faddeev, L.D., Korchemsky, G.P.: High-energy QCD as a completely integrable model. Phys. Lett. B 342, 311–322 (1995)

    ADS  Google Scholar 

  7. Braun, V.M., Derkachov, S.E., Manashov, A.N.: Integrability of three particle evolution equations in QCD. Phys. Rev. Lett. 81, 2020–2023 (1998)

    ADS  Google Scholar 

  8. Minahan, J.A., Zarembo, K.: The Bethe ansatz for N=4 super Yang-Mills. JHEP 03, 013 (2003)

    ADS  MathSciNet  Google Scholar 

  9. Beisert, N., Staudacher, M.: The N=4 SYM integrable super spin chain. Nucl. Phys. B 670, 439–463 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Beisert, N.: The complete one loop dilatation operator of N=4 super Yang-Mills theory. Nucl. Phys. B 676, 3–42 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Kruczenski, M.: Spin chains and string theory. Phys. Rev. Lett. 93, 161602 (2004)

    ADS  MathSciNet  Google Scholar 

  12. Bellucci, S., Casteill, P.Y., Morales, J.F., Sochichiu, C.: SL(2) spin chain and spinning strings on AdS(5) x S**5. Nucl. Phys. B 707, 303–320 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Stefanski Jr., B., Tseytlin, A.A.: Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations. JHEP 05, 042 (2004)

    ADS  MathSciNet  Google Scholar 

  14. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889 (1986)

    ADS  MATH  Google Scholar 

  15. Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104(23), 230602 (2010)

    ADS  Google Scholar 

  16. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random matrices: Theory and applications 1(01), 1130001 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Sasamoto, T., Wadati, M.: One-dimensional asymmetric diffusion model without exclusion. Phys. Rev. E 58, 4181–4190 (1998)

    ADS  Google Scholar 

  18. Alimohammadi, M., Karimipour, V., Khorrami, M.: Exact solution of a one-parameter family of asymmetric exclusion processes. Phys. Rev. E 57(6), 6370 (1998)

    ADS  MathSciNet  Google Scholar 

  19. Alimohammadi, M., Karimipour, V., Khorrami, M.: A two-parametric family of asymmetric exclusion processes and its exact solution. J. Stat. Phys. 97(1–2), 373–394 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Derkachov, S.E.: Baxter’s Q-operator for the homogeneous XXX spin chain. J. Phys. A 32, 5299–5316 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Barraquand, G., Corwin, I.: The \(q\)-Hahn asymmetric exclusion process. Ann. Appl. Probab. 26(4), 2304–2356 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Povolotsky, A.M.: On the integrability of zero-range chipping models with factorized steady states. J. Phys. A 46(46), 465205 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic R matrix for \(U_q(A_n^{(1)})\). Nucl. Phys. B 913, 248–277 (2016)

    ADS  MATH  Google Scholar 

  24. Barraquand, G., Corwin, I.: Random-walk in Beta-distributed random environment. Probab. Theory Relat. Fields 167(3–4), 1057–1116 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Thiery, T., Le Doussal, P.: On integrable directed polymer models on the square lattice. J. Phys. A 48(46), 465001 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Tailleur, J., Kurchan, J., Lecomte, V.: Mapping out-of-equilibrium into equilibrium in one-dimensional transport models. J. Phys. A 41(50), 505001 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107(3–4), 635–675 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Faddeev, L.D.: How algebraic Bethe ansatz works for integrable model. In: Relativistic Gravitation and Gravitational Radiation. Proceedings, School of Physics, Les Houches, France, September 26-October 6, 1995, pp. 149–219 (1996). arXiv:hep-th/9605187 [hep-th]

  30. Korchemsky, G.P.: Bethe ansatz for QCD pomeron. Nucl. Phys. B 443, 255–304 (1995)

    ADS  Google Scholar 

  31. Frassek, R.: The non-compact XXZ spin chain as stochastic particle process. J. Phys. A 52(33), 335202 (2019)

    MathSciNet  Google Scholar 

  32. Martins, M.J., Melo, C.S.: Algebraic Bethe ansatz for U(1) invariant integrable models: compact and non-compact applications. Nucl. Phys. B 820, 620–648 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Frassek, R., Meneghelli, C.: From Baxter Q-Operators to local charges. J. Stat. Mech. 1302, P02019 (2013). [J. Stat. Mech. 1302, P02019(2013)]

    MathSciNet  Google Scholar 

  34. Bazhanov, V.V., Lukowski, T., Meneghelli, C., Staudacher, M.: A shortcut to the Q-operator. J. Stat. Mech. 1011, P11002 (2010)

    Google Scholar 

  35. Bazhanov, V.V., Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter Q-operators and representations of Yangians. Nucl. Phys. B 850, 148–174 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Baxter operators and Hamiltonians for ’nearly all’ integrable closed \(\mathfrak{gl}(n)\) spin chains. Nucl. Phys. B 874, 620–646 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Frassek, R., Lukowski, T., Meneghelli, C., Staudacher, M.: Oscillator construction of su(n|m) Q-operators. Nucl. Phys. B 850, 175–198 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Frassek, R., Marboe, C., Meidinger, D.: Evaluation of the operatorial Q-system for non-compact super spin chains. JHEP 09, 018 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Derkachov, S.E., Korchemsky, G.P., Manashov, A.N.: Evolution equations for quark gluon distributions in multicolor QCD and open spin chains. Nucl. Phys. B 566, 203–251 (2000)

    ADS  Google Scholar 

  40. Derkachov, S.E., Korchemsky, G.P., Manashov, A.N.: Baxter Q operator and separation of variables for the open SL(2, R) spin chain. JHEP 10, 053 (2003)

    ADS  MathSciNet  Google Scholar 

  41. Belitsky, A.V., Derkachov, S.E., Manashov, A.N.: Quantum mechanics of null polygonal Wilson loops. Nucl. Phys. B 882, 303–351 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  42. de Vega, H.J., Ruiz, A.G.: Boundary K matrices for the six vertex and the n(2n–1) A(n-1) vertex models. J. Phys. A 26, L519–L524 (1993)

    MathSciNet  MATH  Google Scholar 

  43. Kulish, P.P., Reshetikhin, NYu., Sklyanin, E.K.: Yang-Baxter equation and representation theory. 1. Lett. Math. Phys. 5, 393–403 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Baseilhac, P., Tsuboi, Z.: Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators. Nucl. Phys. B 929, 397–437 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Frassek, R., Szecsenyi, I.M.: Q-operators for the open Heisenberg spin chain. Nucl. Phys. B 901, 229–248 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Braun, V.M., Ji, Y., Manashov, A.N.: Integrability in heavy quark effective theory. JHEP 06, 017 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Belitsky, A.V.: Separation of Variables for a flux tube with an end. arXiv:1902.08596 [hep-th]

  48. Belliard, S., Crampé, N., Ragoucy, E.: Algebraic Bethe ansatz for open XXX model with triangular boundary matrices. Lett. Math. Phys. 103(5), 493–506 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  49. António, N.C., Manojloviá, N., Salom, I.: Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model. Nucl. Phys. B 889, 87–108 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Franceschini, C., Giardina, C.: Stochastic duality and orthogonal polynomials. arXiv:1701.09115 [math.PR]

  51. Franceschini, C., Giardina, C., Groenevelt, W.: Self-duality of Markov processes and intertwining functions. Math. Phys. Anal. Geom. 21(4), 29 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Carinci, G., Franceschini, C., Giardina, C., Groenevelt, W., Redig, F.: Orthogonal dualities of Markov processes and unitary symmetries. arXiv:1812.08553 [math.PR]

  53. Tseytlin, A.A.: Semiclassical strings and AdS/CFT. In: String Theory: From Gauge Interactions to Cosmology. Proceedings, NATO Advanced Study Institute, Cargese, France, 7–19 June 2004, pp. 265–290 (2004). arXiv:hep-th/0409296 [hep-th]

  54. Plefka, J.: Spinning strings and integrable spin chains in the AdS/CFT correspondence. Living Rev. Rel. 8, 9 (2005)

    MATH  Google Scholar 

  55. Beisert, N., et al.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3–32 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Zinn-Justin, J.: Quantum field theory and critical phenomena. Int. Ser. Monogr. Phys. 113, 1–1054 (2002)

    Google Scholar 

  57. Arenas, Z.G., Barci, D.G.: Supersymmetric formulation of multiplicative white-noise stochastic processes. Phys. Rev. E 85, 041122 (2012)

    ADS  Google Scholar 

  58. Bellucci, S., Casteill, P.Y., Morales, J.F.: Superstring sigma models from spin chains: the SU(1,1|1) case. Nucl. Phys. B 729, 163–178 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Dijkgraaf, R., Orlando, D., Reffert, S.: Relating field theories via stochastic quantization. Nucl. Phys. B 824, 365–386 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Kurchan, J.: Six Out of Equilibrium Lectures. Lecture Notes of the Les Houches Summer School, vol. 90 (2009). arXiv:0901.1271 [cond-mat]

  61. Crampe, N., Ragoucy, E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. 1411(11), P11032 (2014)

    MathSciNet  Google Scholar 

  62. Mangazeev, V.V., Lu, X.: Boundary matrices for the higher spin six vertex model. Nucl. Phys. B 945, 114665 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We like to thank Ivan Corwin, Gregory Korchemsky, Vivien Lecomte, Kirone Mallick and Rodrigo A. Pimenta for useful discussions. Further, we thank the anonymous referees for their useful comments. R.F. likes to thank I.M. Szecsenyi for interesting discussions and collaboration on a related topic. J.K. is supported by the Simons Foundation Grant No 454943. R.F. was supported by the visitor program of the IHÉS where a significant part of this work has been carried out. R.F. also likes to thank the University of Modena and Reggio Emilia for hospitality. Finally we thank the organizers of RAQIS’18 at LAPTh where this work originated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Giardinà.

Additional information

Communicated by Herbert Spohn.

To Joel Lebowitz, for his continuous inspiration.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Taylor Expansion

1.1 Derivation (2.15)

The action of the bulk generator \(-\mathcal {H}^t_{i,i+1}\) on a function of the rescaled variables \((x_i^{(M)}, x_{i+1}^{(M)})\) reads

$$\begin{aligned} -\mathcal {H}^t_{i,i+1} f\big (x_i^{(M)}, x_{i+1}^{(M)}\big )= & {} \sum _{k=1}^{x_i M} \; \frac{1}{k} \Big [ f\Big (x_i^{(M)} - \frac{k}{M}, x_{i+1}^{(M)} + \frac{k}{M}\Big ) - f\Big (x_i^{(M)} , x_{i+1}^{(M)}\Big ) \Big ] \nonumber \\&+ \sum _{k=1}^{x_i M} \; \frac{1}{k} \Big [ f\Big (x_i^{(M)} + \frac{k}{M}, x_{i+1}^{(M)} - \frac{k}{M}\Big ) - f\Big (x_i^{(M)} , x_{i+1}^{(M)}\Big ) \Big ].\nonumber \\ \end{aligned}$$
(A.1)

We only consider the scaling limit of the right jumps, the proof is analogous for the left jumps. On one hand we notice that, by a bivariate Taylor expansion, we may write

$$\begin{aligned}&\sum _{k=1}^{x_i M} \; \frac{1}{k} \Big [ f\Big (x_i^{(M)} - \frac{k}{M}, x_{i+1}^{(M)} + \frac{k}{M}\Big ) - f\Big (x_i^{(M)} , x_{i+1}^{(M)}\Big ) \Big ] \nonumber \\&\quad = \sum _{k=1}^{x_i M} \; \frac{1}{k} \sum _{a=1}^{\infty } \frac{1}{a!} \sum _{b=0}^a {a \atopwithdelims ()b} \Big [\Big (\frac{\partial }{\partial x_i}\Big )^b \Big ( \frac{\partial }{\partial x_{i+1}} \Big )^{a-b} f\Big (x_i^{(M)} , x_{i+1}^{(M)}\Big )\Big ] \Big (-\frac{k}{M} \Big )^b \Big ( \frac{k}{M} \Big )^{a-b}.\nonumber \\ \end{aligned}$$
(A.2)

This implies

$$\begin{aligned}&\lim _{M\rightarrow \infty } \sum _{k=1}^{x_i M} \; \frac{1}{k} \Big [ f\Big (x_i^{(M)} - \frac{k}{M}, x_{i+1}^{(M)} + \frac{k}{M}\Big ) - f\Big (x_i^{(M)} , x_{i+1}^{(M)}\Big ) \Big ] \nonumber \\&\quad =\sum _{a=1}^{\infty } \frac{1}{a!} \sum _{b=0}^a {a \atopwithdelims ()b} \Big [\Big (\frac{\partial }{\partial x_i}\Big )^b \Big ( \frac{\partial }{\partial x_{i+1}} \Big )^{a-b} f(x_i , x_{i+1})\Big ] (-1)^b \int _{0}^{x_i} \alpha ^{a-1} d\alpha \end{aligned}$$
(A.3)

where the convergence of the Riemann sum

$$\begin{aligned} \sum _{k=1}^{x_iM} \frac{1}{k} \Big (\frac{k}{M} \Big )^a \longrightarrow \int _{0}^{x_i} \alpha ^{a-1} d\alpha \qquad \text {as} \quad M\rightarrow \infty \end{aligned}$$
(A.4)

has been exploited. On the other hand we may also write

$$\begin{aligned}&\int _{0}^{x_i} \frac{d \alpha }{\alpha }\Big \{ f(x_i - \alpha , x_{i+1} + \alpha ) - f(x_i,x_{i+1})\Big \} \nonumber \\&\quad =\int _{0}^{x_i} \frac{d \alpha }{\alpha } \sum _{a=1}^{\infty } \frac{1}{a!} \sum _{b=0}^a {a \atopwithdelims ()b} \Big (\frac{\partial }{\partial x_i}\Big )^b \Big ( \frac{\partial }{\partial x_{i+1}} \Big )^{a-b} f(x_i, x_{i+1}) (-\alpha )^b (\alpha )^{a-b} \nonumber \\&\quad =\int _{0}^{x_i} \frac{d \alpha }{\alpha } \sum _{a=1}^{\infty } \frac{1}{a!} \sum _{b=0}^a {a \atopwithdelims ()b} \Big (\frac{\partial }{\partial x_i}\Big )^b \Big ( \frac{\partial }{\partial x_{i+1}} \Big )^{a-b} f(x_i, x_{i+1}) (-1)^b \alpha ^{a}. \end{aligned}$$
(A.5)

The right hand sides of (A.3) and (A.5) do coincide, thus concluding the proof.

1.2 Derivation (2.16)

The action of the bulk generator \(-\mathcal {H}^t_{1}\) on a function of the rescaled variables \(x_1^{(M)}\) reads

$$\begin{aligned} -\mathcal {H}^t_{1} f\big (x_1^{(M)}\big )= & {} \sum _{k=1}^{x_1 M} \; \frac{1}{k} \Big [f\Big (x_1^{(M)} - \frac{k}{M}\Big ) - f\Big (x_1^{(M)}\Big ) \Big ] \nonumber \\&+ \sum _{k=1}^{\infty } \; \frac{[\beta _1^{(M)}]^k}{k} \Big [f\Big (x_1^{(M)} + \frac{k}{M}\Big ) - f\Big (x_1^{(M)}\Big ) \Big ] . \end{aligned}$$
(A.6)

By Taylor expansion, we may write

$$\begin{aligned} -\mathcal {H}^t_{1} f\big (x_1^{(M)}\big )= & {} \sum _{k=1}^{x_1 M} \; \frac{1}{k} \sum _{n=1}^\infty \frac{1}{n!} f^{(n)}\Big (x_1^{(M)}\Big ) \Big (-\frac{k}{M}\Big )^n \nonumber \\&+ \sum _{k=1}^{\infty } \; \frac{[\beta _1^{(M)}]^k}{k} \sum _{n=1}^\infty \frac{1}{n!} f^{(n)}\Big (x_1^{(M)}\Big ) \Big (\frac{k}{M}\Big )^n . \end{aligned}$$
(A.7)

This yields in the limit

$$\begin{aligned} - \lim _{M\rightarrow \infty } \mathcal {H}^t_{1} f\big (x_1^{(M)}\big )= & {} \sum _{n=1}^\infty \frac{1}{n!} f^{(n)}(x_1) (-1)^n \int _{0}^{x_1} \alpha ^{n-1} d\alpha \nonumber \\&+ \sum _{n=1}^\infty \frac{1}{n!} f^{(n)}(x_1) \int _{0}^{\infty } \alpha ^{n-1} e^{-\lambda _1 \alpha } d\alpha . \end{aligned}$$
(A.8)

where, besides (A.4), it has been used the convergence

$$\begin{aligned} \sum _{k=1}^{\infty }\frac{[\beta _1^{(M)}]^k}{k} \Big (\frac{k}{M} \Big )^n = \sum _{k=1}^{\infty }\frac{[1-\frac{\lambda _1}{M}]^k}{k} \Big (\frac{k}{M} \Big )^n \longrightarrow \int _{0}^{\infty } \alpha ^{n-1} e^{-\lambda _1 \alpha } d\alpha , \qquad \text {as} \quad M\rightarrow \infty . \end{aligned}$$
(A.9)

Clearly, the right hand sides of (A.8) coincides with the right hand side of (2.16).

Infinite Sums

1.1 Derivation (3.39)

It is straightforward to see that (3.39) is true for \(k\le l\). In the case \(k>l\) the sum reduces to

$$\begin{aligned} \sum _{m=l}^k \left( {\begin{array}{c}k\\ m\end{array}}\right) \left( {\begin{array}{c}m\\ l\end{array}}\right) \beta ^{k-m}(-\beta )^{m-l}\psi (m+1)=\sum _{m=l}^k \sum _{r=1}^m\left( {\begin{array}{c}k\\ m\end{array}}\right) \left( {\begin{array}{c}m\\ l\end{array}}\right) \frac{(-1)^{m-l}\beta ^{k-l}}{m+1-r} =-\frac{\beta ^{k-l}}{k-l} \end{aligned}$$
(B.1)

where we first used

$$\begin{aligned} \psi (m+1)=\psi (1)+\sum _{r=1}^m\frac{1}{m+1-r} \end{aligned}$$
(B.2)

and exchanged the sums in the second step.

1.2 Derivation (3.41)

After noting that the first sum truncates and shifting the second sum we rewrite (3.41) as

$$\begin{aligned} \begin{aligned} \sum _{m_2=1}^\infty \frac{(-1)^{l+m_2} }{m_2}\alpha ^{m_2}\beta ^{k-l+m_2}&\left( {\begin{array}{c}m_2\\ l\end{array}}\right) \, _2F_1(-k,m_2+1;-l+m_2+1;1) \\&= \sum _{m_2=1}^\infty (-1)^{l+m_2}\alpha ^{m_2}\beta ^{k-l+m_2} \frac{\Gamma (m_2)\Gamma (k-l)}{\Gamma (l+1)\Gamma (-l) \Gamma (k-l+m_2+1)}\\ \end{aligned} \end{aligned}$$
(B.3)

The case \(k>l\) in (3.41) is straightforward, the denominator is finite while the numerator diverges. For \(k\le l\) one has to be more careful. One gets

$$\begin{aligned} \begin{aligned} \sum _{m_2=1}^\infty (-1)^{l+m_2}\alpha ^{m_2}\beta ^{k-l+m_2}&\frac{\Gamma (m_2)\Gamma (k-l)}{\Gamma (l+1)\Gamma (-l) \Gamma (k-l+m_2+1)}\\&=\frac{(-1)^{k+l}}{(l-k)!}\sum _{m_2=1}^\infty (-1)^{m_2}\alpha ^{m_2}\beta ^{k-l+m_2} \frac{\Gamma (m_2)}{\Gamma (k-l+m_2+1)}\\ \end{aligned} \end{aligned}$$
(B.4)

To show the remaining relations we substitute

$$\begin{aligned} \alpha =\frac{1}{1-\beta }=\sum _{p=0}^\infty \beta ^p \end{aligned}$$
(B.5)

Using the binomial series

$$\begin{aligned} \alpha ^{m_2}= \frac{1}{(1-\beta )^{m_2}}=\sum _{n=0}^\infty \frac{\Gamma (m_2+n)}{\Gamma (m_2) \Gamma (1+n)}\beta ^n \end{aligned}$$
(B.6)

we get for \(k=l\)

$$\begin{aligned} \begin{aligned} \sum _{m_2=1}^\infty \frac{(-1)^{m_2} \alpha ^{m_2} \beta ^{m_2}}{m_2}&=\sum _{n=0}^\infty \sum _{m_2=1}^\infty \frac{(-1)^{m_2} \beta ^{n+m_2}(m_2+n-1)!}{n!m_2!}\\&=\sum _{q=1}^\infty \sum _{m_2=1}^q\frac{(-1)^{m_2} \beta ^{q}(q-1)!}{(q-m_2)!m_2!}=-\sum _{q=1}^\infty \frac{\beta ^{q}}{q}\\ \end{aligned} \end{aligned}$$
(B.7)

For \(k<l\) we get

$$\begin{aligned} \begin{aligned}&\frac{(-1)^{k+l}\beta ^{k-l}}{(l-k)!}\sum _{m_2=l-k}^\infty \sum _{n=0}^\infty \frac{(-1)^{m_2} \beta ^{n+m_2}(m_2+n-1)!}{n!(k-l+m_2)!}\\&\quad = \frac{(-1)^{k+l}\beta ^{k-l}}{(l-k)!}\sum _{m_2=l-k}^\infty \sum _{q=m_2}^\infty \frac{(-1)^{m_2} \beta ^{q}(q-1)!}{(q-m_2)!(k-l+m_2)!}\\&\quad = \frac{(-1)^{k+l}\beta ^{k-l}}{(l-k)!}\sum _{q=l-k}^\infty \sum _{m_2=l-k}^q \frac{(-1)^{m_2} \beta ^{q}(q-1)!}{(q-m_2)!(k-l+m_2)!} \end{aligned} \end{aligned}$$
(B.8)

Finally noting that

$$\begin{aligned} \sum _{m=0}^p\frac{(-1)^{m}}{(p-m)!m!}=\delta _{p,0} \end{aligned}$$
(B.9)

we obtain the final result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frassek, R., Giardinà, C. & Kurchan, J. Non-compact Quantum Spin Chains as Integrable Stochastic Particle Processes. J Stat Phys 180, 135–171 (2020). https://doi.org/10.1007/s10955-019-02375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02375-4

Keywords

Navigation