Skip to main content
Log in

High-Temperature Scaling Limit for Directed Polymers on a Hierarchical Lattice with Bond Disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Diamond “lattices” are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, A and B. The construction recipe for diamond graphs depends on a branching number \(b\in {\mathbb {N}}\) and a segmenting number \(s\in {\mathbb {N}}\), for which a larger value of the ratio s / b intuitively corresponds to more opportunities for intersections between two randomly chosen paths. By attaching i.i.d. random variables to the bonds of the graphs, we construct a random Gibbs measure on the set of directed paths by assigning each path an “energy” through summing the random variables along the path. For the case \(b=s\), we propose a scaling regime in which the temperature grows along with the number of hierarchical layers of the graphs, and the partition function (the normalization factor of the Gibbs measure) appears to converge in law. We prove that all of the positive integer moments of the partition function converge in this limiting regime. The motivation of this work is to prove a functional limit theorem that is analogous to a previous result obtained in the \(b<s\) case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, T., Clark, J.: Nested critical points for a directed polymer on a disordered diamond lattice (to appear in Journal of Theoretical Probability) arXiv:1602.06629 (2017)

  2. Alberts, T., Clark, J., Kocić, S.: The intermediate disorder regime for a directed polymer model on a hierarchical lattice. Stoch. Process. Appl. 127, 3291–3330 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Ann. Probab. 42(3), 1212–1256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. J. Stat. Phys. 154(1–2), 305–326 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529–534 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems. J. Eur. Math. Soc. 19, 1–65 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caravenna, F., Sun, R., Zygouras, N.: Universality in marginally relevant disordered systems. Ann. Appl. Probab. 27(5), 3050–3112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clark, J.T.: Continuum directed random polymers on disordered hierarchical diamond lattices, arXiv:1802.03834

  9. Comets, F.: Directed Polymers in Random Environments. Lecture Notes in Mathematics, vol. 2175. Springer, New York (2017)

    MATH  Google Scholar 

  10. Comets, F., Yoshida, N.: Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34, 1746–1770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cook, J., Derrida, B.: Polymers on disordered hierarchical lattices: a nonlinear combination of random variables. J. Stat. Phys. 57, 89–139 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Derrida, B., Gardner, E.: Renormalisation group study of a disordered model. J. Phys. A 17, 3223–3236 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Derrida, B., Griffith, R.B.: Directed polymers on disordered hierarchical lattices. Europhys. Lett. 8(2), 111–116 (1989)

    Article  ADS  Google Scholar 

  14. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps, and quenched disorder. Probab. Theory Relat. Fields 145, 185–216 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Goldstein, L.: Normal approximation for hierarchical structures. Ann. Appl. Probab. 14(4), 1950–1969 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Griffith, R.B.: Spin systems on hierarchical lattices. Introduction and thermodynamical limit. Phys. Rev. B 26(9), 5022–5032 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hambly, B.M., Jordan, J.H.: A random hierarchical lattice: the series-parallel graph and its properties. Adv. Appl. Prob. 36, 824–838 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hambly, B.M., Kumagai, T.: Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Adv. Appl. Prob. 36, 824–838 (2004)

    Article  MATH  Google Scholar 

  19. Kahane, J.P.: Sur le chaos multiplicative. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Lacoin, H., Moreno, G.: Directed polymers on hierarchical lattices with site disorder. Stoch. Proc. Appl. 120(4), 467–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lacoin, H.: Hierarchical pinning model with site disorder: disorder is marginally relevant. Probab. Theory Relat. Fields 148(1–2), 159–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schlösser, T., Spohn, H.: Sample to sample fluctuations in the conductivity of a disordered medium. J. Stat. Phys. 69, 955–967 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wehr, J., Woo, J.M.: Central limit theorems for nonlinear hierarchical sequences or random variables. J. Stat. Phys. 104, 777–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Thane Clark.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 3.4

A Proof of Lemma 3.4

Proof of Lemma 3.4

We will apply a strong induction argument in \({\mathbf {m}}=2, 3, 4, \cdots \). Note that the base case \(m=2\) holds trivially. Now let us assume for the purpose of induction that the statement of the lemma holds for all \(m\in \{2,\dots , {\mathbf {m}}-1\}\), in other terms, there is a \(c\equiv c(r,{\mathbf {m}})>0\) such that for any \(r\in (-\infty ,\lambda ] \) and \(m\in \{2,\ldots ,{\mathbf {m}}\}\) the inequality

$$\begin{aligned} \big |\varrho _ {k}^{(m)}\big (\beta _{n,r}^{(b)}\big )\big |\, \le \, c \Big (\varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\Big )^{\frac{m}{2}} \end{aligned}$$
(A.1)

holds for large enough \(n\in {\mathbb {N}}\) and all \(1\le k\le n \).

By part (i) of Proposition 3.1, we have the recursive inequality

$$\begin{aligned} \big |\varrho _ {k+1}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \big |\, < \,&\frac{1}{b^{{\mathbf {m}}-2}}\big |\varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big |\,+\, \big |\varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \big |\,\Big |U_{\mathbf {m}}\Big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \Big ) \Big | \nonumber \\&\,+\,\Big |V_{\mathbf {m}}\Big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots ,\varrho _ {k}^{({\mathbf {m}}-1)}\big (\beta _{n,r}^{(b)}\big ) \Big )\Big | \,. \end{aligned}$$
(A.2)

Since the variable \(\omega \) has finite exponential moments, we have that

$$\begin{aligned} \big |\varrho _ {0}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big | \,=\,\Bigg |{\mathbb {E}}\Bigg [\bigg (\frac{ \exp \big \{\omega \beta _{n,r}^{(b)} \big \} }{{\mathbb {E}}\big [ \exp \big \{\omega \beta _{n,r}^{(b)} \big \} \big ] }-1 \bigg )^{{\mathbf {m}}}\Bigg ]\Bigg | = O \Big (\frac{1}{n^{\frac{{\mathbf {m}}}{2}}} \Big ) \end{aligned}$$
(A.3)

is small with large n. Since \(\varrho _ {n}^{(2)}\big (\beta _{n,r}^{(b)}\big )\) converges with large n to \(R_b(r)\), and \(R_b(r)=-\frac{\kappa _b^2}{r}+ o (r^{-1})\) for \(-r\gg 1\) by part (iii) of Lemma 1.1, there is a \(-{\widetilde{\lambda }}_1>2\kappa _b^2\) large enough so that when \(r\in (-\infty ,{\widetilde{\lambda }}_1]\), then

$$\begin{aligned} \varrho _ {n}^{(2)}\big (\beta _{n,r}^{(b)}\big )\,<\,-\frac{2\kappa _b^2}{r}\,<\,1\, \end{aligned}$$
(A.4)

holds for large enough n.

By the induction assumption, the term \(\big |V_{\mathbf {m}}\big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \varrho _ {k}^{({\mathbf {m}}-1)}\big (\beta _{n,r}^{(b)}\big ) \big )\big | \) has the bound

$$\begin{aligned} \Big |V_{\mathbf {m}}\Big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \varrho _ {k}^{({\mathbf {m}}-1)}\big (\beta _{n,r}^{(b)}\big ) \Big )\Big | \,\le&\,V_{\mathbf {m}}\bigg ( \varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \Big (\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\Big )^{\frac{\mathbf {m-1}}{2}} \bigg ) \nonumber \\ \,\le&\, {\widehat{c}}\big [\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\big ]^{\frac{{\mathbf {m}}}{2}} \,. \end{aligned}$$
(A.5)

If \(r\in (-\infty ,{\widetilde{\lambda }}_1]\), then \(\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )<1\) for large n and the above is bounded by a constant multiple \({\widehat{c}} \) of \(\big [\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\big ]^{{\mathbf {m}}/2}\) as a consequence of part (ii) of Proposition 3.1.

If \( \big |\varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \big | \le {\mathbf {x}} \) for some \({\mathbf {x}}<1\), the factor \(\big |U_{\mathbf {m}}\big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \big )\big |\) in (A.2) has a bound of the form

$$\begin{aligned} \Big |U_{\mathbf {m}}\Big ( \varrho _ {k}^{(2)}\big (\beta _{n,r}^{(b)}\big ), \cdots , \varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big ) \Big )\Big |\,\le \, U_{\mathbf {m}}\bigg ( \frac{2\kappa _b^2}{|r|}, \cdots , \Big (\frac{2\kappa _b^{2}}{|r|}\Big )^{\frac{{\mathbf {m}}-1}{2}}, {\mathbf {x}} \bigg ) \,\le \,{\mathbf {c}}{\mathbf {x}} \,+\, \frac{{\mathbf {c}}}{|r|}\,, \end{aligned}$$
(A.6)

where the first inequality holds by (A.4) for sufficiently large \(n\in {\mathbb {N}}\) and all \(1\le k \le n\) when \(r\le {\widetilde{\lambda }}_2\). The second inequality holds for some \({\mathbf {c}}>0\) and all \({\mathbf {x}}<1\) and \(r\in (-\infty , {\widetilde{\lambda }}_2]\) since the polynomial \(U_{{\mathbf {m}}}\) has no constant term by (i) of Proposition 3.1. Pick some \({\mathbf {x}}\) small enough so that

$$\begin{aligned} \delta \,:=\, {\mathbf {c}}{\mathbf {x}}+\frac{1}{b^{{\mathbf {m}}-2}} \,<\,1 \,. \end{aligned}$$

Let \({\widehat{k}}_n\in {\mathbb {N}}\) be the smallest value such that \(\big | \varrho _ {{\widehat{k}}_n}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big |> {\mathbf {x}} \).

Define \(\lambda = \min ( {\widetilde{\lambda }}_1, {\widetilde{\lambda }}_2 )\). By the bounds (A.5) and (A.6), there is a \(\delta \in (0,1)\) and a \(C'>0\) such that for all \(r\in (-\infty , \lambda )\) there is an \(n\in {\mathbb {N}}\) large enough so that for all \(k<\min (n,{\widehat{k}}_n)\)

$$\begin{aligned} \big | \varrho _ {k+1}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big | \, \le \, \delta \big |\varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big |\,+\,C'\Big (\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\Big )^{\frac{{\mathbf {m}}}{2}}\,. \end{aligned}$$
(A.7)

Using (A.7) recursively, it follows that for \(k\le \min (n,{\widehat{k}}_n)\)

$$\begin{aligned} \big |\varrho _ {k}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big | \, \le&\, \delta ^{k}\big |\varrho _ {0}^{({\mathbf {m}})}\big (\beta _{n,r}^{(b)}\big )\big |\,+\,C' \sum _{j=0}^{k-1}\delta ^{k-1-j}\Big (\varrho _{j}^{(2)}\big (\beta _{n,r}^{(b)}\big )\Big )^{\frac{{\mathbf {m}}}{2}}\nonumber \\ \,\le&\, O \Big (\frac{1}{n^{\frac{{\mathbf {m}}}{2}}} \Big ) \,+\,\frac{C'}{1-\delta }\left( \varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\right) ^{\frac{{\mathbf {m}}}{2}}\nonumber \\ \,\le&\, C\Big (\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\Big )^{\frac{{\mathbf {m}}}{2}}\,. \end{aligned}$$
(A.8)

The second inequality holds by (A.3) for the first term and since \(\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big ) \) is increasing with \(k\in {\mathbb {N}}\) for the second term. The third inequality holds for some \(C>0\) since a multiple of \(\big (\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\big )^{\frac{{\mathbf {m}}}{2}}\) can be used to cover the error \( O \big (n^{-\frac{{\mathbf {m}}}{2}} \big ) \). To understand this, recall that \(\varrho _{0}^{(2)}\big (\beta _{n,r}^{(b)}\big )=\kappa _b^2/n+ o (1/n)\) for \(n\gg 1\) and, again, invoke that \(\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big ) \) is increasing with k. If \(-\lambda >0 \) is large enough so that

$$\begin{aligned} \delta \,:=\, {\mathbf {c}}C\big (R_b(\lambda )\big )^{\frac{{\mathbf {m}}}{2}}+\frac{1}{b^{{\mathbf {m}}-2}} \,<\,1 \,, \end{aligned}$$
(A.9)

then for all \(r\in (-\infty ,\lambda )\) the inequality \({\widehat{k}}_n>n\) will hold for sufficiently large n since \(\varrho _{k}^{(2)}\big (\beta _{n,r}^{(b)}\big )\) converges to \( R_b(\lambda )\) as \(n\rightarrow \infty \). Hence, (A.8) will hold for all \(k\le n\) when n is large enough.

The above argument proves the statement of the lemma is true for \(\lambda \in {{\mathbb {R}}}\) sufficiently far in the negative direction so that (A.9) holds. For arbitrary \(\lambda '\in {{\mathbb {R}}}\), pick \(N\in {\mathbb {N}}\) large enough so that \(\lambda =\lambda '-N \) satisfies (A.9). Then the reasoning above applies in the same way to show that \({\widehat{k}}_n> n-N\) for large n, and thus (A.8) will hold for all \(1\le k\le n-N\). The inequality can then be extended to \(n-N< k\le n\) through (A.2). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, J.T. High-Temperature Scaling Limit for Directed Polymers on a Hierarchical Lattice with Bond Disorder. J Stat Phys 174, 1372–1403 (2019). https://doi.org/10.1007/s10955-019-02241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02241-3

Keywords

Navigation