Skip to main content
Log in

On a Boltzmann Equation for Compton Scattering from Non relativistic Electrons at Low Density

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A Boltzmann equation, used to describe the evolution of the density function of a gas of photons interacting by Compton scattering with electrons at low density and non relativistic equilibrium, is considered. A truncation of the very singular redistribution function is introduced and justified. The existence of weak solutions is proved for a large set of initial data. A simplified equation, where only the quadratic terms are kept and that appears at very low temperature of the electron gas, for small values of the photon’s energies, is also studied. The existence of weak solutions, and also of more regular solutions that are very flat near the origin, is proved. The long time asymptotic behavior of weak solutions of the simplified equation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ballew, J., Iyer, G., Pego, R.L.: Bose–Einstein condensation in a hyperbolic model for the Kompaneets equation. SIAM J. Math. Anal. 48, 3840–3859 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barik, P.K., Giri, A.K., Laurençot, P.: Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel. (2018) ArXiv e-prints, arXiv:1804.00853

  3. Birkinshaw, M.: The Sunyaev–Zeldovich effect. Phys. Rep. 310(2), 97–195 (1999)

    Article  ADS  Google Scholar 

  4. Bogachev, V.I.: Measure Theory, vol. 2. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  5. Brown, L.M., Feynman, R.P.: Radiative corrections to Compton scattering. Phys. Rev. 85, 231–244 (1952)

    Article  MATH  ADS  Google Scholar 

  6. Buet, C., Després, B., Leroy, T.: Anisotropic models and angular moments methods for the Compton scattering. E-prints, hal-01717173 (2018)

  7. Caflisch, R.E., Levermore, C.D.: Equilibrium for radiation in a homogeneous plasma. Phys. Fluids 29(3), 748–752 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  8. Camejo, C.C., Gröpler, R., Warnecke, G.: Regular solutions to the coagulation equations with singular kernels. Math. Methods Appl. Sci. 38(11), 2171–2184 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Chane-Yook, M., Nouri, A.: On a quantum kinetic equation linked to the Compton effect. Transp. Theory Stat. Phys. 33(5–7), 403–427 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Cortés, E., Escobedo, M.: On a system of equations for the normal fluid-condensate interaction in a Bose gas. ArXiv e-prints, (2018)

  11. Dreicer, H.: Kinetic theory of an electron–photon gas. Phys. Fluids 7, 735–753 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  12. Escobedo, M., Herrero, M.A., Velázquez, J.J.L.: A nonlinear Fokker–Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma. Trans. Am. Math. Soc. 350(10), 3837–3901 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 80(5), 471–515 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Escobedo, M., Mischler, S., Valle, M.A.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron. J. Diff. Equ. Monogr. 4(2), 1–85 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Escobedo, M., Mischler, S., Velázquez, J.J.L.: Asymptotic description of Dirac mass formation in kinetic equations for quantum particles. J. Diff. Equ. 202(2), 208–230 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Ferrari, E., Nouri, A.: On the Cauchy problem for a quantum kinetic equation linked to the Compton effect. Math. Comput. Modell. 43, 838–853 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. Wiley, New York (1999)

    MATH  Google Scholar 

  18. Fournier, N., Laurençot, P.: Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal. 233(2), 351–379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grachev, S.I.: Nonstationary radiative transfer: evolution of a spectrum by multiple compton scattering. Astrophysics 57(4), 550–558 (2014)

    Article  ADS  Google Scholar 

  20. Kavian, O.: Remarks on the Kompaneets Equation, a Simplified Model of the Fokker–Planck Equation. Studies in Applied Mathematics. North-Holland (2002)

  21. Klenke, A.: Probability Theory: A Comprehensive Course (Universitext). Springer, London (2013)

    Google Scholar 

  22. Kompaneets, A.S.: The establishment of thermal equilibrium between quanta and electrons. Soviet J. Exp. Theor. Phys. 4, 730–737 (1957)

    MathSciNet  MATH  ADS  Google Scholar 

  23. Levermore, C.D., Liu, H., Pego, R.L.: Global dynamics of Bose–Einstein condensation for a model of the Kompaneets equation. SIAM J. Math. Anal. 48(4), 2454–2494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mészáros, P., Bussard, R.W.: The angle-dependent Compton redistribution function in X-ray sources. Astrophys. J. 306, 238–247 (1986)

    Article  ADS  Google Scholar 

  25. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9(1), 78–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weyman, R.: Diffusion approximation for a photon gas interacting with a plasma via the compton effect. Phys. Fluids 8, 2112–2114 (1965)

    Article  ADS  Google Scholar 

  27. Zel’Dovich, Y.B.: Reviews of topical problems: interaction of free electrons with electromagnetic radiation. Sov. Phys. Uspekhi 18, 79–98 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  28. Zel’Dovich, Y.B., Levich, E.V.: Bose condensation and shock waves in photon spectra. Sov. J. Exp. Theor. Phys. 28, 1287–1290 (1969)

    ADS  Google Scholar 

  29. Zel’Dovich, Y.B., Levich, E.V., Syunyaev, R.A.: Stimulated compton interaction between Maxwellian electrons and spectrally narrow radiation. Sov. J. Exp. Theor. Phys. 35, 733–740 (1972)

    ADS  Google Scholar 

  30. Zel’Dovich, Y.B., Syunyaev, R.A.: Shock wave structure in the radiation spectrum during bose condensation of photons. Sov. J. Exp. Theor. Phys. 35, 81–85 (1972)

    ADS  Google Scholar 

Download references

Acknowledgements

The research of the first author is supported by the Basque Government through the BERC 2014-2017 program, by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323, and by MTM2014-52347-C2-1-R of DGES. The research of the second author is supported by Grants MTM2014-52347-C2-1-R of DGES and IT641-13 of the Basque Government. The authors gratefully thank the referees for their careful reading of the manuscript and their valuable comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Escobedo.

Appendices

Appendix A: Some Useful Estimates

Lemma A.1

If B satisfies (2.5)–(2.10), and \(\varphi \) is L-Lipschitz on \([0,\infty )\), then for all \((x,y)\in \Gamma \):

$$\begin{aligned}&\displaystyle |k_{\varphi }(x,y)|\le LC_*Ae^{\frac{|x-y|}{2}},\quad A=\max \left\{ \frac{(1-\theta )^2}{\theta \delta (1+\theta )},\rho _*\right\} , \end{aligned}$$
(A.1)
$$\begin{aligned}&\displaystyle |\ell _{\varphi }(x,y)|\le \frac{LC_*(1-\theta )}{\theta ^2(1+\theta )}e^{\frac{x-y}{2}}. \end{aligned}$$
(A.2)

Moreover, the function \(\mathcal {L}_{\varphi }\) given in (2.31) is continuous on \([0,\infty )\) and for all \(x\in [0,\infty )\),

$$\begin{aligned} |\mathcal {L}_{\varphi }(x)|\le \frac{LC_*(1-\theta )}{\theta ^2(1+\theta )}\big (e^{\frac{x-\gamma _1(x)}{2}}-e^{\frac{x-\gamma _2(x)}{2}}\big ). \end{aligned}$$
(A.3)

In particular, \(\mathcal {L}_{\varphi }(0)=0\).

Proof

We first prove (A.1). Let \((x,y)\in {\text {supp}}(B)=\Gamma \), and assume, by the symmetry of \(k_{\varphi }\), that \(0\le y\le x\). By the mean value theo, \(|e^{-x}-e^{-y}|\le e^{-y}(x-y)\), and from (2.11) and the Lipschitz condition,

$$\begin{aligned} |k_{\varphi }(x,y)|&\le LC_*e^{\frac{x-y}{2}}\frac{(x-y)^2}{(x+y)xy}. \end{aligned}$$

Then by (2.8)–(2.10)

$$\begin{aligned} \frac{(x-y)^2}{(x+y)xy}\le \left\{ \begin{array}{ll} \frac{(1-\theta )^2}{\theta \delta _*(1+\theta )}&{} \quad \text {if }(x,y)\in \Gamma _1,\\ \rho _*&{} \quad \text {if }(x,y)\in \Gamma _2, \end{array} \right. \end{aligned}$$

and (A.1) follows.

In order to prove (A.2) we use (2.11) and the Lipschitz condition to have, for all \((x,y)\in \Gamma \),

$$\begin{aligned} |\ell _{\varphi }(x,y)|&\le LC_* e^{\frac{x-y}{2}}\frac{y|x-y|}{x(x+y)}. \end{aligned}$$

Using that \(\Gamma \subset \{(x,y)\in [0,\infty )^2:\theta x\le y\le \theta ^{-1}x\}\), then

$$\begin{aligned} \frac{y|x-y|}{x(x+y)}\le \frac{(1-\theta )}{\theta ^2(1+\theta )}, \end{aligned}$$

and (A.2) follows. We obtain (A.3) directly from (A.2) and Remark 2.1.

We finally prove the continuity of \(\mathcal {L}_{\varphi }\) on \([0,\infty )\). By (2.7)–(2.10), \(\mathcal {L}_{\varphi }(x)\) is continuous for all \(x>0\), so we only need to prove \(\mathcal {L}_{\varphi }(x)\rightarrow 0\) as \(x\rightarrow 0\). This follows from (A.3) and the mean value theo, using \( \gamma _2(x)-\gamma _1(x)\le (\theta ^{-1}-\theta )x. \)\(\square \)

Remark A.2

Under the hypothesis of Lemma A.1, the function \(k_{\varphi }\) could not be continuous at the origin \((x,y)=(0,0)\), since we do not know if \(\lim _{(x,y)\rightarrow (0,0)}k_{\varphi }(x,y)=0\). However we have the following.

Lemma A.3

If B satisfies (2.5)–(2.10), then \(k_{\varphi }\in C([0,\infty )^2)\) for all \(\varphi \in C^1([0,\infty ))\) with \(\varphi '(0)=0\), and \(k_{\varphi }(0,0)=0\).

Proof

By definition and (2.7), it is clear that \(k_{\varphi }\in C([0,\infty )^2\setminus \{0\})\). If we prove that \(\lim _{(x,y)\rightarrow (0,0)}k_{\varphi }(x,y)=0\), the continuity at the origin follows. To this end we mimic the proof of (A.1) using \(\varphi (x)-\varphi (y)=\varphi '(\xi )(x-y)\) for some \(\xi \in (\min \{x,y\},\max \{x,y\})\) instead of the Lipschitz condition, and we obtain

$$\begin{aligned} |k_{\varphi }(x,y)|&\le \max \left\{ \frac{(1-\theta )^2}{\theta \delta (1+\theta )},\rho \right\} |\varphi '(\xi )|e^{\frac{|x-y|}{2}} \end{aligned}$$
(A.4)

for all \((x,y)\in \Gamma \) and all \(\varphi \in C^1([0,\infty )).\) If \(\varphi '(0)=0\), it follows from (A.4) that \(\lim _{(x,y)\rightarrow (0,0)}k_{\varphi }(x,y)=0\). \(\square \)

Proposition A.4

Suppose that B satisfies (2.5)–(2.10), \(\varphi \) is L-Lipschitz on \([0,\infty )\), and \(u\in \mathscr {M}_+([0,\infty ))\). Then

$$\begin{aligned} |K_{\varphi }(u,u)|&\le LC_*A\bigg (\int _{[0,\infty )}e^{\frac{x-\gamma _1(x)}{2}}u(x)dx\bigg )\bigg (\int _{[0,\infty )}u(y)dy\bigg ), \end{aligned}$$
(A.5)
$$\begin{aligned} |L_{\varphi }(u)|&\le \frac{LC_*(1-\theta )}{2\theta ^2(1+\theta )}\int _{[0,\infty )}\big (e^{\frac{x-\gamma _1(x)}{2}}-e^{\frac{x-\gamma _2(x)}{2}}\big )u(x)dx, \end{aligned}$$
(A.6)

where A is given in (A.1).

Proof

In order to prove (A.5), we use Remarks 2.1, 2.3 and (A.1):

$$\begin{aligned} |K_{\varphi }(u,u)|&\le LC_*A\int _0^{\infty }e^{\frac{x}{2}}u(x)\int _{\gamma _1(x)}^x e^{-\frac{y}{2}}u(y)dydx\\&\le LC_*A\int _0^{\infty } e^{\frac{x-\gamma _1(x)}{2}}u(x)\int _{\gamma _1(x)}^x u(y)dydx, \end{aligned}$$

from where (A.5) follows. The estimate (A.6) follows directly from (A.3). \(\square \)

Let us define now

$$\begin{aligned} K_{\varphi ,n}(u,u)&=\frac{1}{2}\iint _{[0,\infty )^2}k_{\varphi ,n}(x,y)u(t,x)u(t,y)dydx, \end{aligned}$$
(A.7)
$$\begin{aligned} k_{\varphi ,n}(x,y)&=b_n(x,y)(e^{-x}-e^{-y})(\varphi (x)-\varphi (y)), \end{aligned}$$
(A.8)
$$\begin{aligned} L_{\varphi ,n}(u_n)&=\frac{1}{2}\int _{[0,\infty )}\mathcal {L}_{\varphi ,n}(x)u(t,x)dx, \end{aligned}$$
(A.9)
$$\begin{aligned} \mathcal {L}_{\varphi ,n}(x)&=\int _0^{\infty }\ell _{\varphi ,n}(x,y)dy \end{aligned}$$
(A.10)
$$\begin{aligned} \ell _{\varphi ,n}(x,y)&=b_n(x,y)y^2e^{-y}(\varphi (x)-\varphi (y)). \end{aligned}$$
(A.11)

Remark A.5

Since \(\phi _n\le x^{-1}\), the estimates (A.1)–(A.3) in Lemma A.1 hold for \(k_{\varphi ,n}\), \(\ell _{\varphi ,n}\) and \(\mathcal {L}_{\varphi ,n}\) respectively, and estimates (A.5) and (A.6) in Lemma A.4 hold for \(K_{\varphi ,n}(u,u)\) and \(L_{\varphi ,n}(u)\) respectively, for all \(n\in \mathbb {N}\).

Lemma A.6

\(\mathcal {L}_{\varphi ,n}\rightarrow \mathcal {L}_{\varphi }\) as \(n\rightarrow \infty \) uniformly on the compact sets of \([0,\infty )\) for all \(\varphi \)L-Lipschitz on \([0,\infty )\).

Proof

Let \(R>0\) and \(x\in [0,R]\). On the one hand, if \(x\in [0,1/n]\), we have \(|\mathcal {L}_{\varphi }(x)-\mathcal {L}_{\varphi ,n}(x)|\le 2|\mathcal {L}_{\varphi }(x)|\rightarrow 0\) as \(n\rightarrow \infty \), since \(\mathcal {L}_{\varphi }(0)=0\) (cf. Lemma A.1). On the other hand, if \(x\in [1/n,R]\) and \(y\in [1/n,n]\), by definition \(\phi _n(x)\phi _n(y)=(xy)^{-1}\), and then

$$\begin{aligned} |\mathcal {L}_{\varphi }(x)-\mathcal {L}_{\varphi ,n}(x)|&\le \int _0^{\frac{1}{n}}| \ell _{\varphi }(x,y)-\ell _{\varphi ,n}(x,y)|dy\nonumber \\&\quad +\int _n^{\infty }|\ell _{\varphi }(x,y)-\ell _{\varphi ,n}(x,y)|dy. \end{aligned}$$

The two integrals in the right hand side above are treated in the same way. Using \(|\ell _{\varphi }(x,y)-\ell _{\varphi ,n}(x,y)|\le |\ell _{\varphi }(x,y)|\) and (A.2),

$$\begin{aligned} \int _0^{\frac{1}{n}}|\ell _{\varphi }(x,y)|dy&\le \frac{LC_*(1-\theta )}{\theta ^2(1+\theta )}e^{\frac{R}{2}}\int _0^{\frac{1}{n}}e^{-\frac{y}{2}}dy\xrightarrow [n\rightarrow \infty ]{}0,\\ \int _n^{\infty }|\ell _{\varphi }(x,y)|dy&\le \frac{LC_*(1-\theta )}{\theta ^2(1+\theta )}e^{\frac{R}{2}}\int _n^{\infty }e^{-\frac{y}{2}}dy\xrightarrow [n\rightarrow \infty ]{}0, \end{aligned}$$

and the result follows. \(\square \)

Appendix B: The Function \(\mathcal {B} _{ \beta }\), Properties and Scalings

In this Section, we describe several properties of the function \(\mathcal {B}_\beta \). First, the parameter \(\beta \) is used to scale the variables, in such a way that the total mass of the solution is conserved. Then, for each \(\beta >0\) fixed, the behavior of \(\mathcal {B}_\beta (k, k')\) is studied when k and \(k'\) are varying on \((0, \infty )\).

1.1 B.1 \(\beta \)-Scalings of \(\mathcal {B}_\beta \)

It looks natural from (1.2) to introduce the scaled variable

$$\begin{aligned} \mathbf x =\beta \, \mathbf k , \end{aligned}$$
(B.1)

and define

$$\begin{aligned} F(\tau ,x)=f(t,k),\qquad \tau =\beta ^3 t,\quad x=\beta k. \end{aligned}$$
(B.2)

The scaling (B.2) preserves the total number of particles:

$$\begin{aligned} \int _0^{\infty } x^2 F(\tau , x)dx=\int _0^{\infty }k^2f(t,k)dk=\int _0^{\infty }k^2 f(0,k)dk\quad \forall \tau >0. \end{aligned}$$

In terms of F,

$$\begin{aligned} k^2\frac{\partial f}{\partial t}(t,k)= & {} \beta ^4x^2\frac{\partial F}{\partial \tau }(\tau ,x),\\ \tilde{q} (f, f')= & {} \beta ^6FF'\big (e^{-x}-e^{-x'}\big )+\beta ^3\big (F'e^{-x}-Fe^{-x'}\big ), \end{aligned}$$

and if we define

$$\begin{aligned} B_{\beta }(x,x')=\beta ^{-1}\mathcal {B}_{\beta }(k,k'), \end{aligned}$$
(B.3)

that is,

$$\begin{aligned} B_\beta (x, x')=\sqrt{\beta } e^{\frac{(x'+x )}{2}}\int _0^\pi \frac{(1+\cos ^2\theta )}{ |\mathbf x '-\mathbf x | }e^{-\beta \frac{m(x-x')^2+\frac{ |\mathbf x '-\mathbf x |^4}{4m\beta ^2}}{2 |\mathbf x '-\mathbf x |^2}} d\cos \theta , \end{aligned}$$
(B.4)

the Eq. (1.2) then reads

$$\begin{aligned} x^2\frac{\partial F}{\partial \tau }(\tau ,x)=&\int _0^\infty B_\beta (x, x')FF'\big (e^{-x}-e^{-x'}\big )xx'dx'+\nonumber \\&+\beta ^{-3}\int _0^\infty B_\beta (x, x')\big (F'e^{-x}-Fe^{-x'}\big )xx'dx'. \end{aligned}$$
(B.5)

If we now define

$$\begin{aligned} u(\tau , x)=x^2F(\tau , x) \end{aligned}$$
(B.6)

then from (B.5) we finally obtain

$$\begin{aligned} \frac{\partial u}{\partial \tau }(\tau ,x)&=\int _0^\infty \frac{B_{\beta }(x,x')}{xx'}\big (e^{-x}-e^{-x'}\big )uu'dx'+\nonumber \\&\quad +\beta ^{-3}\int _0^\infty \frac{B_{\beta }(x,x')}{xx'}\big (u'x^2e^{-x}-ux'^2e^{-x'}\big )dx', \end{aligned}$$
(B.7)

The second term in the right hand side of (B.7) seems then negligible when \(\beta \) tends to \(\infty \), but no rigorous result on that direction is known.

1.2 B.2 The Function \(B_\beta (x, x')\) for \(\beta \) Fixed.

In this Section we show some properties of the kernel \(B_{\beta }\) defined in (B.4).

Proposition B.1

For all \(\beta >0\), \(x>0\) and \(x'>0\),

$$\begin{aligned} B_\beta (x, x')\le \sqrt{\beta }\;\frac{4\big (10\max ^2\{x, x'\}+\min ^2\{x, x'\}\big )}{15 \max ^3\{x, x'\}}e^{\frac{(x'+x )}{2}}, \end{aligned}$$
(B.8)

and for all \(x>0,\;x'>0\) with \(x\ne x'\),

$$\begin{aligned} \lim _{ \beta \rightarrow \infty }B_\beta (x, x')=0. \end{aligned}$$
(B.9)

Proof

For all \(x>0\) and \(x'>0\),

$$\begin{aligned} \frac{e^{-\frac{(x+x')}{2}}}{\sqrt{\beta }}B_\beta (x, x')&\le \int _0^\pi \frac{(1+\cos ^2\theta )}{ |\mathbf x '-\mathbf x | }d\cos \theta =\int _{ -1 }^1 \frac{(1+t^2)}{ \sqrt{x^2+x'^2-2xx't} }dt \nonumber \\&=\frac{4\big (10\max ^2\{x, x'\}+\min ^2\{x, x'\}\big )}{15 \max ^3\{x, x'\}}, \end{aligned}$$
(B.10)

and then (B.8) holds. If \(x'\not =x\), we have first

$$\begin{aligned} \lim _{ \beta \rightarrow \infty }e^{-\beta \frac{m(x-x')^2+\frac{ |\mathbf x '-\mathbf x |^4}{4m\beta ^2}}{2 |\mathbf x '-\mathbf x |^2}} =0\qquad \forall \theta \in [0,\pi ], \end{aligned}$$

and since

$$\begin{aligned} \frac{(1+\cos ^2\theta )}{ |\mathbf x '-\mathbf x | } e^{-\beta \frac{(x-x')^2+\frac{ |\mathbf x '-\mathbf x |^4}{\beta ^2}}{2m |\mathbf x '-\mathbf x |^2}} \le \frac{(1+\cos ^2\theta )}{ |\mathbf x '-\mathbf x |} \in L^1(d\cos \theta ) \quad \forall \beta >0, \end{aligned}$$

then (B.9) follows from Lebesgue’s convergence Theorem. \(\square \)

Proposition B.2

$$\begin{aligned} B_\beta (x, x)&=\sqrt{\beta }\left( \frac{2\sqrt{2\pi m\beta }}{x^2}+\mathcal {O}\left( \frac{1}{x}\right) ^3\right) e^x\quad \text {as}\quad x\rightarrow \infty , \end{aligned}$$
(B.11)
$$\begin{aligned} B_\beta (x, x)&=\sqrt{\beta }\;\frac{44}{15 }\left( \frac{1}{x}+1\right) +\mathcal {O}(x)\quad \text {as}\quad x\rightarrow 0. \end{aligned}$$
(B.12)

Proof

By definition, for all \(x>0\),

$$\begin{aligned} B_\beta (x, x)&=\sqrt{\frac{\beta }{2}}\frac{e^{x}}{x}\int _0^\pi \frac{(1+\cos ^2\theta )}{\sqrt{1-\cos \theta } }e^{- \frac{x^2(1-\cos \theta )}{4m \beta }} d\cos \theta \\&=\sqrt{\beta }\frac{2e^x\sqrt{\beta m}}{x^6}\Big (\sqrt{2\pi }\big (6\beta ^2m^2-2\beta m x^2+x^4\big )Erf\left( \frac{x}{\sqrt{2\beta m}}\right) \\&\quad -12e^{-\frac{x^2}{2\beta m}}(\beta m)^{3/2}x\Big ), \end{aligned}$$

and the result follows. \(\square \)

The function \(B_\beta \) is exponentially decreasing in the direction orthogonal to the first diagonal, as shown in the next two Propositions.

Proposition B.3

For all \(\beta >0\),

$$\begin{aligned}&\nabla B_\beta (x, x')\cdot (1, -1)> 0 \quad \hbox {if}\quad x'>x>0, \end{aligned}$$
(B.13)
$$\begin{aligned}&\nabla B_\beta (x, x')\cdot (1, -1) < 0 \quad \hbox {if}\quad x>x'>0. \end{aligned}$$
(B.14)

Proof

It is only a straightforward calculation. With the help of Mathematica, using the change of variables \(t=\cos \theta \),

$$\begin{aligned} \frac{\partial B_\beta }{\partial x}(x,x')&=\frac{e^{\frac{(x'+x )}{2}}}{4m\sqrt{\beta }}\int _{-1}^{1} \frac{(1+t^2)}{|\mathbf x '-\mathbf x |^{5}}e^{-\beta \frac{m(x-x')^2+\frac{ |\mathbf x '-\mathbf x |^4}{4m\beta ^2}}{2 |\mathbf x '-\mathbf x |^2}}\Theta (x, x', t) dt, \end{aligned}$$
(B.15)
$$\begin{aligned} \Theta (x, x', t)&=4(\beta m) ^2(t-1)x'(x-x')(x+x')-(x-tx') |\mathbf x '-\mathbf x |^4\nonumber \\&\quad +2\beta m \left( x'^2-2tx'(x-1)+(x-2)x\right) |\mathbf x '-\mathbf x |^2. \end{aligned}$$
(B.16)

The expression of \(\frac{\partial B_\beta }{\partial x'}\) is obtained from (B.15) and (B.16) using the permutation \(x\leftrightarrow x'\). Then,

$$\begin{aligned} \nabla B_\beta (x, x')\cdot (1, -1)&=\frac{e^{\frac{(x'+x )}{2}}}{4m\sqrt{\beta }}\int _{-1}^{1} \frac{(1+t^2)}{|\mathbf x '-\mathbf x |^{5} }e^{-\beta \frac{m(x-x')^2+\frac{ |\mathbf x '-\mathbf x |^4}{4m\beta ^2}}{2 |\mathbf x '-\mathbf x |^2}}\nonumber \\&\quad \times \big (\Theta (x, x', t) -\Theta (x',x,t)\big )dt,\nonumber \\ \Theta (x, x', t) -\Theta (x',x,t)&=(x'-x)\Big [4(\beta m) ^2(1-t)(x+x')^2\nonumber \\&\quad +4\beta m (1+t)|\mathbf x '-\mathbf x |^2+(1+t)|\mathbf x '-\mathbf x |^4 \Big ], \end{aligned}$$
(B.17)

and the result follows. \(\square \)

Proposition B.4

For all \(\beta >0\), \(x>0\) and \(x'>0\),

$$\begin{aligned} B _{ \beta }(x, x')\le \mathscr {B} _{ \beta }(x, x'), \end{aligned}$$
(B.18)

where

$$\begin{aligned} \mathscr {B}_{\beta }(x, x')&=\sqrt{\beta } e^{-\beta \frac{m(x-x')^2+\frac{ (x-x')^4}{4m\beta ^2}}{2 (x+x')^2}}N (x+x', |x-x'|), \end{aligned}$$
(B.19)
$$\begin{aligned} N (p, q)&= \frac{ 8\, e^{\frac{p}{2}}\big (10(p+q)^2+(p-q)^2\big )}{15 (p+q)^3},\quad \forall p>0,\;\forall q>0. \end{aligned}$$
(B.20)

Proof

For all \(\mathbf x \in \mathbb {R}^3\) and \(\mathbf x '\in \mathbb {R}^3\) such that \(|\mathbf x |=x\), \(|\mathbf x '|=x'\),

$$\begin{aligned} |x-x'|\le |\mathbf x -\mathbf x '|\le x+x'. \end{aligned}$$

Therefore,

$$\begin{aligned} B _{ \beta }(x, x')\le \sqrt{\beta } e^{\frac{(x'+x )}{2}} e^{-\beta \frac{m(x-x')^2+\frac{ (x-x')^4}{4m\beta ^2}}{2(x+x')^2}}\int _0^\pi \frac{(1+\cos ^2\theta )}{ |\mathbf x '-\mathbf x | } d\cos \theta , \end{aligned}$$

and the result follows using (B.10). \(\square \)

Corollary B.5

$$\begin{aligned} \forall x>0, x'>0:\,\, B _{ \beta } (x, x')\le & {} B _{ \beta }\left( \frac{x+x'}{2}, \frac{x+x'}{2}\right) ,\nonumber \\ B_\beta \left( \frac{x+x'}{2}, \frac{x+x'}{2}\right)= & {} \sqrt{\beta }\,\left( \frac{2\sqrt{2\pi m\beta }}{(x+x')^2}+\mathcal {O}\left( \frac{1}{x+x'}\right) ^3\right) e^{\frac{x+x'}{2}} \end{aligned}$$
(B.21)

as \(x+x'\rightarrow \infty \), and

$$\begin{aligned}&B_\beta \left( \frac{x+x'}{2}, \frac{x+x'}{2}\right) =\frac{44 \sqrt{\beta }\,}{15 }\left( \frac{1}{x+x'}+1\right) +\mathcal {O}(x+x'),\,\,\,x+x'\rightarrow 0. \end{aligned}$$

If \(x+x'\rightarrow \infty \), and \(|x-x'|\le \theta x\):

$$\begin{aligned} |e^{-x}-e^{-x'}|B_\beta (x, x')\le 2 \sqrt{\beta }\,\left( \frac{2\sqrt{2\pi m\beta }}{(x+x')^2}+\mathcal {O}\left( \frac{1}{x+x'}\right) ^3\right) \left| \, \sinh \left( \frac{\theta x}{2} \right) \right| . \end{aligned}$$
(B.22)

For all \(\rho >0\) fixed and \(x>0\), \(x'>0\) such that \(x+x'=\rho \),

$$\begin{aligned} B _{ \beta }(x, x')\le \sqrt{\beta }\,e^{-\beta \frac{(x-x')^2}{2m \rho ^2}}\Phi (\rho , |x-x'|). \end{aligned}$$
(B.23)

Proof

By Proposition B.3, the function \(B_\beta \) is strictly decreasing in the direction orthogonal to the first diagonal, and then property (B.21) follows. In order to prove (B.22) we have first, when \(x+x'\rightarrow \infty \),

$$\begin{aligned} |e^{-x}-e^{-x'}|B_\beta (x, x')\le 2 \left( \frac{2\sqrt{2\pi m\beta }}{(x+x')^2}+\mathcal {O}\left( \frac{1}{x+x'}\right) ^3\right) \left| \,\sinh \left( \frac{x'-x}{2} \right) \right| \end{aligned}$$

If moreover, \(0\le x'-x \le \theta x\) then

$$\begin{aligned} 0\le (e^{-x}-e^{-x'})B_\beta (x, x')\le 2 \left( \frac{2\sqrt{2\pi m\beta }}{(x+x')^2}+\mathcal {O}\left( \frac{1}{x+x'}\right) ^3\right) \sinh \left( \frac{\theta x}{2} \right) \end{aligned}$$

If \(-\theta x \le x'-x\le 0\) then,

$$\begin{aligned} 0\le -\sinh \left( \frac{x'-x}{2} \right) =\sinh \left( \frac{x-x'}{2} \right) \le \sinh \left( \frac{\theta x}{2} \right) , \end{aligned}$$

and (B.22) follows. \(\square \)

Proposition B.6

For all \(\varphi \in C_c((0, \infty )\times (0, \infty ))\):

$$\begin{aligned}&\lim _{ \beta \rightarrow \infty }\iint _{ (0, \infty )^2 }\varphi (x, y) \Phi _\beta (x, y) \mathscr {B} _{ \beta }(x, y)dxdy\nonumber \\&\quad = \frac{88}{15}\sqrt{\frac{{m \pi }}{2}} erf(1)\int _{ (0, \infty ) }\varphi \left( \frac{z}{2}, \frac{z}{2} \right) e^{\frac{z}{2}}dz \end{aligned}$$
(B.24)

Proof

Define the new variables

$$\begin{aligned} \xi =x-y,\,\,\zeta =x+y,\,\,\,\psi (\xi , \zeta )=\varphi \left( \frac{\xi +\zeta }{2}, \frac{\zeta -\xi }{2} \right) \end{aligned}$$

and denote \(\Psi _{\beta }(\xi ,\zeta )=\Phi _{\beta }(x,y)\). Then,

$$\begin{aligned} I=&\iint _{ (0, \infty )^2 }\varphi (x, y)\Phi _\beta (x, y) \mathscr {B} _{ \beta }(x, y)dxdy\\ =&\iint _{ D }e^{- \frac{\beta ^2\xi ^2+\xi ^4}{2m \beta \zeta ^2}}\Psi _{ \beta } (\xi , \zeta ) \mathscr {B}_\beta \left( \frac{\xi +\zeta }{2}, \frac{\zeta -\xi }{2} \right) \psi (\xi , \zeta )d\xi d\zeta \end{aligned}$$

where \(D=\{(\zeta ,\xi )\in \mathbb {R}^2:\zeta >0,\;-\zeta<\xi <\zeta \}\). We write now,

$$\begin{aligned} \frac{\beta ^2\xi ^2+\xi ^4}{2m \beta \zeta ^2}=\frac{\beta \xi ^2}{2m\zeta ^2}\left( 1+ \frac{ \xi ^2 }{\beta ^2} \right) \end{aligned}$$

and the change of variables:

$$\begin{aligned} \sqrt{\frac{\beta }{2m}}\frac{\xi }{\zeta }=z_1,\,\,\zeta =z_2;\,\,\, \xi =\sqrt{\frac{2m}{\beta }}z_1z_2, \, \zeta =z_2 \end{aligned}$$

whose Jacobian is \(\sqrt{2m/\beta }\, z_2\) and,

$$\begin{aligned} I=&\iint _{ \Omega } e^{-z_1^2\left( 1+\frac{2m z_1^2z_2^2}{\beta }\right) } \mathscr {B}_\beta \left( Z_1, Z_2 \right) \\&\times \Psi \left( \beta ^{-1} \sqrt{\frac{2m}{\beta }}z_1z_2, \beta ^{-1} z_2, \right) \psi \left( \sqrt{\frac{2m}{\beta }}z_1z_2,z_2\right) \sqrt{2m/\beta }\, z_2dz_1dz_2\\ Z_1=&\frac{1}{2}\left( z_2+\sqrt{\frac{2m}{\beta }} z_1z_2 \right) ,\,\,Z_2=\frac{1}{2}\left( z_2-\sqrt{\frac{2m}{\beta }} z_1z_2 \right) \end{aligned}$$

Due to the cut off function \(\Phi _\beta (x, y)\), the actual domain of integration \(\Omega _\beta \) is:

$$\begin{aligned} \Omega _\beta =\left\{ (z_1,z_2)\in \mathbb {R}\times \mathbb {R}^+;\,\, \sqrt{2m}|\,z_1|\le \theta z_2^{1/2}\left( 1-\frac{2m}{\beta }z_1^2 \right) ^{1/2} \right\} \end{aligned}$$

where \(\Omega \) is the domain where \(z_2>0\), \(z_1\in (-1, 1)\). As \(\beta \rightarrow \infty \),

$$\begin{aligned} \lim _{ \beta \rightarrow \infty }e^{-z_1^2\left( 1+\frac{2m z_1^2z_2^2}{\beta }\right) } \psi \left( \sqrt{\frac{2m}{\beta }}z_1z_2, z_2\right) = e^{-z_1^2} \psi \left( 0, z_2\right) . \end{aligned}$$

On the other hand, using (B.12), for all \(z_1, z_2\),

$$\begin{aligned} \lim _{ \beta \rightarrow \infty } \frac{\mathscr {B}_\beta \left( Z_1,Z_2\right) }{\beta } = \frac{44\, e^{\frac{z_2}{2}} }{15 z_2} \end{aligned}$$
(B.25)

By definition of \(\Psi \), for all \(z_1\in \mathbb {R}\) and \(z_2>0\) fixed, if \(\beta \) is sufficiently large,

$$\begin{aligned} \Psi \left( \beta ^{-1} \sqrt{\frac{2m}{\beta }}z_1z_2, \beta ^{-1} z_2, \right) =1 \end{aligned}$$

Then,

$$\begin{aligned} \lim _{\beta \rightarrow \infty }I=&\frac{44}{15}\sqrt{2m} \iint _{\Omega } e^{-z_1^2} e^{\frac{z_2}{2}} \psi \left( 0, z_2\right) dz_1dz_2\\ =&\frac{44}{15}\sqrt{\frac{{m\pi }}{2}} erf (1)\int _{ (0, \infty ) }\varphi \left( \frac{z_2}{2}, \frac{z_2}{2} \right) e^{\frac{z_2}{2}}dz_2 \end{aligned}$$

\(\square \)

The function \(B_\beta (x, y)\ge 0\) coincides with \(\mathscr {B}_\beta (x, y)\) for \(x=y\) and is below that function, that tends to a Dirac measure along the first diagonal as \(\beta \rightarrow \infty \). From properties (B.9) and (B.24), the truncation of \(\mathcal {B}_\beta \) may then be seen as reasonable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés, E., Escobedo, M. On a Boltzmann Equation for Compton Scattering from Non relativistic Electrons at Low Density. J Stat Phys 175, 819–878 (2019). https://doi.org/10.1007/s10955-019-02230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02230-6

Keywords

Navigation