Skip to main content
Log in

Arctic Curve of the Free-Fermion Six-Vertex Model in an L-Shaped Domain

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the six-vertex model in an L-shaped domain of the square lattice, with domain wall boundary conditions, in the case of free-fermion vertex weights. We describe how the recently developed ‘Tangent method’ can be used to determine the form of the arctic curve. The obtained result is in agreement with numerics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In [41] there is a misprint in (2.20), (2.22) and (3.8): In the first factor of the first equation the replacement \(a\leftrightarrow b\) should be made.

References

  1. Korepin, V.E., Zinn-Justin, P.: Thermodynamic limit of the six-vertex model with domain wall boundary conditions. J. Phys. A 33, 7053–7066 (2000). arXiv:cond-mat/0004250

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zinn-Justin, P.: Six-vertex model with domain wall boundary conditions and one-matrix model. Phys. Rev. E 62, 3411–3418 (2000). arXiv:math-ph/0005008

    Article  ADS  MathSciNet  Google Scholar 

  3. Zinn-Justin, P.: The influence of boundary conditions in the six-vertex model (2002), arXiv:cond-mat/0205192

  4. Reshetikhin, N., Palamarchuk, K.: The 6-vertex model with fixed boundary conditions, (2006) arXiv:1010.5011

  5. Colomo, F., Pronko, A.G.: The arctic curve of the domain-wall six-vertex model. J. Stat. Phys. 138, 662–700 (2010). arXiv:0907.1264

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bleher, P., Liechty, K.: Random matrices and the six-vertex model. In: CRM Monographs Series, vol. 32. American Mathematical Society, Providence, RI (2013)

  7. Reshetikhin, N., Sridhar, A.: Integrability of limit shapes of the six-vertex model. Commun. Math. Phys. 356, 535–563 (2017). arXiv:1510.01053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Reshetikhin, N., Sridhar, A.: Limit shapes of the stochastic six-vertex model (2016), arXiv:1609.01756

  9. Allegra, N., Dubail, J., Stéphan, J.-M., Viti, J.: Inhomogeneous field theory inside the arctic circle. J. Stat. Mech. 2016, 053108 (2016). arXiv:1512.02872

    Article  MathSciNet  Google Scholar 

  10. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165, 563–624 (2016). arXiv:1407.6729

    Article  MathSciNet  MATH  Google Scholar 

  11. Dimitrov, E.: Six-vertex models and the GUE-corners process. Int. Math. Res. Notices (2018), in press arXiv:1610.06893

  12. Granet, A., Budzynzki, L., Dubail, J., Jacobsen, J.L.: Inhomogeneous Gaussian free field inside the interacting Arctic curve, arXiv:1807.07927

  13. Jockush, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem, arXiv:math/9801068

  14. Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. N. Y. J. Math. 4, 137–165 (1998). arXiv:math/9801059

    MathSciNet  MATH  Google Scholar 

  15. Cerf, R., Kenyon, R.: The low-temperature expansion of the Wulff crystal in the \(3D\) Ising model. Commun. Math. Phys. 222, 147–179 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random \(3\)-dimensional Young diagram. J. Am. Math. Soc. 16, 581–603 (2003). arXiv:math/0107056

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferrari, P.L., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113, 1–46 (2003). arXiv:cond-mat/0212456

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. Duke Math. J. 131, 499–524 (2006). arXiv:math-ph/0311062

    Article  MathSciNet  MATH  Google Scholar 

  19. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006). arXiv:math-ph/0311005

    Article  MathSciNet  MATH  Google Scholar 

  20. Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199, 263–302 (2007). arXiv:math-ph/0507007

    Article  MathSciNet  MATH  Google Scholar 

  21. Petersen, T.K., Speyer, D.: An arctic circle theorem for groves. J. Comb. Theory. Ser. A 111, 137–164 (2005). arXiv:math/0407171

    Article  MathSciNet  MATH  Google Scholar 

  22. Pittel, B., Romik, D.: Limit shapes for random square Young tableaux. Adv. Appl. Math. 38, 164–209 (2007). arXiv:math.PR/0405190

    Article  MathSciNet  MATH  Google Scholar 

  23. Francesco, P.Di, Soto-Garrido, R.: Arctic curves of the octahedron equation. J. Phys. A 47, 285204 (2014). arXiv:1402.4493

    Article  MathSciNet  MATH  Google Scholar 

  24. Petrov, L.: Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes. Prob. Theor. Rel. Fields 160, 429–487 (2014). arXiv:1202.3901

    Article  MathSciNet  MATH  Google Scholar 

  25. Romik, D., Śniady, P.: Limit shapes of bumping routes in the Robinson-Schensted correspondence. Random Struct. Algorithm 48, 171–182 (2016). arXiv:1304.7589

    Article  MathSciNet  MATH  Google Scholar 

  26. Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., Ramassamy, S.: Dimers on rail yard graphs. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 4, 479–539 (2017). arXiv:1504.05176

    Article  MathSciNet  MATH  Google Scholar 

  27. Bufetov, A., Knizel, A.: Asymptotics of random domino tilings of rectangular Aztec diamonds. Ann. Inst. H. Poincar Probab. Statist. 54, 1250–1290 (2018). arXiv:1604.01491

    Article  MathSciNet  MATH  Google Scholar 

  28. Francesco, P.Di, Lapa, M.F.: Arctic curves in path models from the tangent method. J. Phys. A 51, 155202 (2018). arXiv:1711.03182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Francesco, P. Di, Guitter, E.: Arctic curves for paths with arbitrary starting points: a tangent method approach. J. Phys. A: Math. Theor. (2018) arXiv:1803.11463. In press

  30. Stéphan, J.-M.: Return probability after a quantum quench from a domain wall initial state in the spin-1/2 XXZ chain. J. Stat. Mech. Theory Exp. 2017, 103108 (2017). arXiv:1707.06625

    Article  Google Scholar 

  31. Collura, M., Luca, A.De, Viti, J.: Analytic solution of the domain wall nonequilibrium stationary state. Phys. Rev. B 97, 081111 (2018). arXiv:1707.06218

    Article  ADS  Google Scholar 

  32. Cugliandolo, L.: Artificial spin-ice and vertex models. J. Stat. Phys. 167, 499–514 (2017). arXiv:1701.02283

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Korepin, V.E.: Calculations of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Colomo, F., Pronko, A.G.: The limit shape of large alternating-sign matrices. SIAM J. Discret. Math. 24, 1558–1571 (2010). arXiv:0803.2697

    Article  MathSciNet  MATH  Google Scholar 

  35. Colomo, F., Pronko, A. G., Zinn-Justin, P.: The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime. J. Stat. Mech. Theory Exp. L03002 (2010) arXiv:1001.2189

  36. Colomo, F., Sportiello, A.: Arctic curves of the six-vertex model on generic domains: the tangent method. J. Stat. Phys. 164, 1488–1523 (2016). arXiv:1605.01388

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Colomo, F., Pronko, A.G.: Emptiness formation probability in the domain-wall six-vertex model. Nucl. Phys. B 798, 340–362 (2008). arXiv:0712.1524

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000). arXiv:math/9903134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Pronko, A.G.: On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions. J. Math. Sci. (N. Y.) 192, 101–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Colomo, F., Pronko, A.G.: Third-order phase transition in random tilings. Phys. Rev. E 88, 042125 (2013). arXiv:1306.6207

    Article  ADS  Google Scholar 

  41. Colomo, F., Pronko, A.G.: Thermodynamics of the six-vertex model in an L-shaped domain. Commun. Math. Phys. 339, 699–728 (2015). arXiv:1501.03135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Colomo, F., Pronko, A.G., Sportiello, A.: Generalized emptiness formation probability in the six-vertex model. J. Phys. A 49, 415203 (2016). arXiv:1605.01700

    Article  MathSciNet  MATH  Google Scholar 

  43. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. J. Algebraic Combin. 1, 111– 132; 219– 234, (1992) arXiv:math/9201305

  44. Propp, J.: Generalized domino-shuffling. Theor. Comput. Sci. 303, 267–301 (2003). arXiv:math/0111034

    Article  MathSciNet  MATH  Google Scholar 

  45. Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Ann. of Math. Stud., vol. 164. Princeton University Press, Princeton, NJ (2007)

  46. Douglas, M.R., Kazakov, V.A.: Large \(N\) phase transition in continuum \(\text{ QCD }_2\). Phys. Lett. B 319, 219–230 (1993). arXiv:hep-th/9305047

    Article  ADS  Google Scholar 

  47. Zinn-Justin, P.: Universality of correlation functions of Hermitian random matrices in an external field. Commun. Math. Phys. 194, 631–650 (1998). arXiv:cond-mat/9705044

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Abanov, S. Chhita and F. Franchini for interesting discussions. We are indebted to B. Wieland for sharing with us the code for generating uniformly sampled alternating-sign matrices. We thank the Simons Center for Geometry and Physics (SCGP, Stony Brook), research program on ‘Statistical Mechanics and Combinatorics’ and the Galileo Galilei Institute for Theoretical Physics (GGI, Florence), research programs on ‘Statistical Mechanics, Integrability and Combinatorics’ and ‘Entanglement in Quantum Systems’, for hospitality and support at some stage of this work. FC is grateful to LIPN, équipe Calin at Université Paris 13, for hospitality and support at some stage of this work. AGP and AS are grateful to INFN, Sezione di Firenze for hospitality and support at some stage of this work. AGP acknowledges partial support from the Russian Science Foundation, Grant #18-11-00297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Pronko.

Appendices

Appendix A: Comparison with Finite-Size Results

In this paper we have determined the arctic curve of a free-fermionic model. As a result of the simplifications occurring in this case, with respect to what it would be for a generic six-vertex model prediction, it is much easier to perform a comparison of the result with informations obtained by alternative methods.

In particular, through the correspondence with a model of dimer coverings on a bipartite planar graph, at finite size, a suitable 1-point function in the bulk can be calculated, either from the inverse Kasteleyn matrix, or, more efficiently, through a method, devised by Propp, as part of the Urban Renewal, or Generalised Domino Shuffling, algorithm for the exact sampling of configurations (see [44], Sect. 3).

Our geometry is particularly adapted to the use of Propp’s algorithm. With respect to the graphical notation in [44] (see in particular Sect. 1.2), we shall just initialise the weights as in a graph of the form shown in Fig. 10. Then, from the algorithm we obtain the edge-inclusion probabilities, that is, the probabilities \(p_{ij}\), \(q_{ij}\), \(r_{ij}\) and \(s_{ij}\) that the edges in the plaquette of coordinates (ij), and position NW, NE, SW and SE, respectively, are occupied in an uniformly chosen perfect matching compatible with the domain shape (again notations are chosen as to match with those in [44]). Frozen regions correspond to coordinates (ij) such that the quadruples \((p_{ij},q_{ij},r_{ij},s_{ij})\) are equal to (1, 0, 0, 0), (0, 1, 0, 0), etc., up to corrections exponentially small in the size of the domain. We represent graphically these four functions in a compact way, with two different strategies, aiming at representing the arctic curve, or, instead, the limit shape.

Fig. 10
figure 10

The Aztec Diamond graph related to the L-shaped domain

In the first case, consider the combination

$$\begin{aligned} x_{ij}=\frac{1}{2}(1+p_{ij}-q_{ij}-r_{ij}+s_{ij}), \end{aligned}$$
(A.1)

associated to each plaquette, that is valued in [0, 1], and is near to 0 or to 1 in the frozen regions (it is the local fraction of dimers which are oriented diagonally, instead that anti-diagonally). We plot in gray the plaquettes (ij) such that \(x_{ij}\) is valued in \([\varepsilon ,1-\varepsilon ]\), where \(\varepsilon =N^{-2/3}\). The scaling of this threshold marks the change of regime between typical and atypical local fluctuations of the arctic curve [38]. The choice of the multiplicative constant 1 is of no special significance, and any other finite constant would have produced similar results. The comparison with our analytic prediction, shown in Fig. 9, is remarkably good (everywhere within one lattice spacing).

In the second case, a more refined visualization of the edge-inclusion probabilities is obtained by associating to a plaquette the complex number

$$\begin{aligned} z_{ij}=\sqrt{p_{ij}} + \mathrm {i}\, \sqrt{q_{ij}}- \mathrm {i}\, \sqrt{r_{ij}} - \sqrt{s_{ij}}. \end{aligned}$$
(A.2)

This quantity is valued in the disk of radius 1, and is exponentially near to 1, \(\mathrm {i}\), \(-1\) or \(-\mathrm {i}\), if the plaquette is in a frozen region. We make a coloured plot of the domain, with hue determined according to the argument of \(z_{ij}\), and brightness determined according to the absolute value of \(z_{ij}\) (so that the colour is near to white in the liquid region). The data are shown in Fig. 7.

Appendix B: Proof of Proposition 3.1

We present here the derivation of representation (3.4) for the generating function \(h_{N,r,s}(w)\), which is defined by (2.4) and (2.5). It can be written as

$$\begin{aligned} h_{N,r,s}(w)= \frac{F_{N,r,s}(w)}{F_{N,r,s}(1)}, \end{aligned}$$
(B.1)

where

$$\begin{aligned} F_{N,r,s}(w)=\sum _{r_1=1}^{r} \left( G_{N,s}^{(r_1,r,\ldots ,r)}-G_{N,s}^{(r_1-1,r,\ldots ,r)}\right) w^{r_1-1}. \end{aligned}$$
(B.2)

Note that \(F_{N,r,s}(1)=G_{N,s}^{(r,\ldots ,r)}\) is the EFP of the six-vertex model with domain wall boundary conditions (\(F_{N,r,s}(1)\equiv F_N^{(r,s)}\), in the notation of [37]). Change of the integration variables \(z_j\mapsto x_j=(\alpha z_j+1-\alpha )/z_j\), \(j=1,\ldots ,s\), in (2.2) yields

$$\begin{aligned} G_{N,s}^{(r_1,\ldots ,r_s)}= & {} (-1)^{\frac{s(s-1)}{2}} \prod _{j=1}^{s} (1-\alpha )^{N-r_j} \nonumber \\&\times \oint _{C_\infty }^{} \cdots \oint _{C_\infty }^{} \prod _{j=1}^s \frac{x_j^{N-j}}{(x_j-\alpha )^{N-r_j}(x_j-1)^{s-j+1}} \prod _{1\le j<k\le s}(x_k-x_j)\, \frac{\mathrm {d}^s x}{(2\pi \mathrm {i})^s}, \end{aligned}$$
(B.3)

where \(C_\infty \) denotes a circular contour of large radius around the origin (thus enclosing the points \(x=\alpha \) and \(x=1\)). Hence,

$$\begin{aligned} F_{N,r,s}(w)= & {} (-1)^{\frac{s(s-1)}{2}}(1-\alpha )^{(N-r)s} w^{r-1} \nonumber \\&\times \oint _{C_\infty }^{} \cdots \oint _{C_\infty }^{} \frac{x_1^{N-1}}{(x_1-\alpha )^{N-r}(x_1-1)^{s-1}(x_1-u)} \nonumber \\&\times \prod _{j=2}^s \frac{x_j^{N-j}}{(x_j-\alpha )^{N-r}(x_j-1)^{s-j+1}} \prod _{1\le j<k\le s}(x_k-x_j)\, \frac{\mathrm {d}^s x}{(2\pi \mathrm {i})^s}, \end{aligned}$$
(B.4)

where \(u=(\alpha w +1-\alpha )/w\). Using

$$\begin{aligned} \det \left[ (x_{s-k+1}-\alpha )^{s-j}\right] _{j,k=1,\ldots ,s} =\prod _{1\le j<k\le s}^{}(x_k-x_j) \end{aligned}$$
(B.5)

we can write \(F_{N,r,s}(w)\) in the form of an \(s\times s\) determinant

$$\begin{aligned} F_{N,r,s}(w)=(-1)^{\frac{s(s-1)}{2}}(1-\alpha )^{s(s+q)} w^{r-1} \det A(u), \end{aligned}$$
(B.6)

where the matrix A(u) contains dependence on u only in the last column

$$\begin{aligned} A_{jk}(u)= {\left\{ \begin{array}{ll} \displaystyle \oint _{C_\infty } \frac{x^{r+q+k-1}}{(x-\alpha )^{q+j}(x-1)^k}\, \frac{\mathrm {d}x}{2\pi \mathrm {i}} &{}\quad k\ne s \\ \displaystyle \oint _{C_\infty } \frac{x^{r+q+s-1}}{(x-\alpha )^{q+j}(x-1)^{s-1}(x-u)}\, \frac{\mathrm {d}x}{2\pi \mathrm {i}} &{}\quad k=s, \end{array}\right. } \end{aligned}$$
(B.7)

and where we have set \(N=r+s+q\), \(q\ge 0\).

To proceed with (B.6), it is useful to consider first the case \(w=1\), that corresponds to \(u=1\). Using

$$\begin{aligned}&\oint _{C_\infty } \frac{x^{c}}{(x-\alpha )^{a}(x-\beta )^b}\,\frac{\mathrm {d}x}{2\pi \mathrm {i}} = \frac{1}{(a-1)!(b-1)!}\partial _\alpha ^{a-1} \partial _\beta ^{b-1} \oint _{C_\infty } \frac{x^{c}}{(x-\alpha )(x-\beta )}\, \frac{\mathrm {d}x}{2\pi \mathrm {i}} \nonumber \\&\quad = \sum _{m=a-1}^{c-b}\left( {\begin{array}{c}m\\ a-1\end{array}}\right) \left( {\begin{array}{c}c-m-1\\ b-1\end{array}}\right) \alpha ^{m-a+1} \beta ^{c-m-b}, \qquad a,b,c\in {\mathbb {N}}, \end{aligned}$$
(B.8)

for the entries of the matrix \(A\equiv A(1)\), upon setting \(\beta =1\), \(a=q+j\), \(b=k\), and \(c=r+q+k-1\) and making the change \(m\mapsto m+q\), we get

$$\begin{aligned} A_{jk}=\sum _{m=j-1}^{r-1}\left( {\begin{array}{c}m+q\\ q+j-1\end{array}}\right) \left( {\begin{array}{c}r+k-2-m\\ k-1\end{array}}\right) \alpha ^{m-j+1}. \end{aligned}$$
(B.9)

Consider now entries of a given column; since

$$\begin{aligned} \left( {\begin{array}{c}m+q\\ q+j-1\end{array}}\right) =\frac{q!}{(q+j-1)!}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) (m)_{j-1}, \end{aligned}$$
(B.10)

where \((m)_{a}:=m (m-1)\cdots (m-a+1)\) denotes the falling factorial, we have

$$\begin{aligned} A_{jk}=\frac{q!}{(q+j-1)! \alpha ^{j-1}} \widetilde{A}_{jk} \end{aligned}$$
(B.11)

where

$$\begin{aligned} \widetilde{A}_{jk}=\sum _{m=0}^{r-1}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) (m)_{j-1} \left( {\begin{array}{c}r+k-2-m\\ k-1\end{array}}\right) \alpha ^{m}, \end{aligned}$$
(B.12)

and hence

$$\begin{aligned} \det A= \frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)! } \alpha ^{-\frac{s(s-1)}{2}} \det \widetilde{A}. \end{aligned}$$
(B.13)

The determinant of \(\widetilde{A}\) evaluates as follows

$$\begin{aligned} \det \widetilde{A}= & {} \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{k=1}^{s}\left( {\begin{array}{c}m_k+q\\ q\end{array}}\right) \left( {\begin{array}{c}r+k-2-m_k\\ k-1\end{array}}\right) \prod _{l<k}^{}(m_k-m_l) \alpha ^{m_1+\ldots +m_s} \nonumber \\= & {} \frac{(-1)^{\frac{s(s-1)}{2}}}{\prod _{j=0}^{s} j!} \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{k=1}^{s}\left( {\begin{array}{c}m_k+q\\ q\end{array}}\right) \prod _{l<k}^{}(m_k-m_l)^2 \alpha ^{m_1+\ldots +m_s}, \end{aligned}$$
(B.14)

where we have used the fact that \((m)_{j-1}\) is a monic polynomial of degree \(j-1\) in m, and, similarly, that \(\left( {\begin{array}{c}r+k-2-m\\ k-1\end{array}}\right) \) is a polynomial of degree \(k-1\) in m, with the leading coefficient \((-1)^{k-1}/(k-1)!\). In total, our calculation amounts to

$$\begin{aligned} F_{N,r,s}(1)= & {} \frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)!\prod _{j=0}^{s}j!} \frac{(1-\alpha )^{s(s+q)}}{\alpha ^{\frac{s(s-1)}{2}}} \nonumber \\&\times \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{j=1}^{s}\left( {\begin{array}{c}m_j+q\\ q\end{array}}\right) \prod _{l<k}(m_k-m_l)^2\alpha ^{m_1+\ldots +m_s}. \end{aligned}$$
(B.15)

Note that this representation may equivalently be written as

$$\begin{aligned} F_{N,r,s}(1) =\frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)!j!} \frac{(1-\alpha )^{s(s+q)}}{\alpha ^{\frac{s(s-1)}{2}}} \det \left[ \sum _{m=0}^{r-1}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) m^{j+k-2}\alpha ^m\right] _{j,k=1,\ldots ,s}, \end{aligned}$$
(B.16)

in agreement with [38, 39].

Consider now the case of generic w. To apply the derivation above with a minimal modification, consider instead of the matrix A(u) some matrix B(u), which differs from A(u) only in the entries of the last column,

$$\begin{aligned} B_{js}(u) = \oint _{C_\infty }^{} \frac{x^{r+q}}{(x-\alpha )^{q+j}} \left( \frac{x^{s-1}}{(x-1)^{s-1}(x-u)}+\sum _{k=1}^{s-1}\gamma _k\frac{x^{k-1}}{(x-1)^k} \right) \, \frac{\mathrm {d}x}{2\pi \mathrm {i}}, \end{aligned}$$
(B.17)

where \(\gamma _k\), \(k=1,\ldots ,s-1\), are some constants in x. Note that \(\det A(u) =\det B(u)\). For \(\gamma _k=u^{s-1-k}/(u-1)^{s-k}\) the pole at \(x=1\) disappears in the integral, since

$$\begin{aligned} \sum _{k=1}^{s-1}\gamma _k\frac{x^{k-1}}{(x-1)^k}= \frac{u^{s-1}}{(u-1)^{s-1}(x-u)}-\frac{x^{s-1}}{(x-1)^{s-1}(x-u)}. \end{aligned}$$
(B.18)

Therefore, with this choice of \(\gamma _k\)’s, and recalling (B.8), we have

$$\begin{aligned} B_{js}(u)=\frac{q!}{(q+j-1)!\alpha ^{j-1}} \frac{u^{r+s-2}}{(u-1)^{s-1}} \sum _{m=0}^{r-1}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) (m)_{j-1} \left( \frac{\alpha }{u}\right) ^m. \end{aligned}$$
(B.19)

Similarly to (B.12), introduce matrix \(\widetilde{B}(u)\), with entries

$$\begin{aligned} \widetilde{B}_{jk}(u)= {\left\{ \begin{array}{ll} \widetilde{A}_{jk}&{} k\ne s\\ \displaystyle \sum _{m=0}^{r-1} \left( {\begin{array}{c}q+m\\ q\end{array}}\right) (m)_{j-1} \left( \frac{\alpha }{u}\right) ^{m}&k=s. \end{array}\right. } \end{aligned}$$
(B.20)

We have

$$\begin{aligned} \det B(u)= \frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)! } \frac{u^{r+s-2}}{\alpha ^{\frac{s(s-1)}{2}}(u-1)^{s-1}} \det \widetilde{B}(u). \end{aligned}$$
(B.21)

In this case, the analogue of (B.14) is

$$\begin{aligned} \det \widetilde{B}(u)= & {} \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{k=1}^{s}\left( {\begin{array}{c}m_k+q\\ q\end{array}}\right) \nonumber \\&\times \prod _{k=1}^{s-1}\left( {\begin{array}{c}r+k-2-m_k\\ k-1\end{array}}\right) \prod _{l<k}^{}(m_k-m_l) \frac{\alpha ^{m_1+\ldots +m_s}}{u^{m_s}} \nonumber \\= & {} \frac{(-1)^{\frac{(s-1)(s-2)}{2}}}{\prod _{j=0}^{s-2} j!} \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{k=1}^{s}\left( {\begin{array}{c}m_k+q\\ q\end{array}}\right) \prod _{l<k}^{}(m_k-m_l) \nonumber \\&\times \prod _{k=1}^{s-1} m_k^{k-1} \frac{\alpha ^{m_1+\ldots +m_s}}{u^{m_s}}. \end{aligned}$$
(B.22)

Symmetrizing the summand with respect to permutations of \(m_1,\ldots ,m_s\) and substituting everything in (B.6), we get

$$\begin{aligned} F_{N,r,s}(w)= & {} \frac{(q!)^s}{s!\prod _{j=0}^{s-1}(q+j)!\prod _{j=0}^{s-2}j!} \frac{(1-\alpha )^{s(s+q)}}{\alpha ^{\frac{s(s-1)}{2}}} w^{r-1} \frac{u^{r+s-2}}{(u-1)^{s-1}} \nonumber \\&\times \sum _{m_1,\ldots ,m_s=0}^{r-1} \prod _{j=1}^{s}\left( {\begin{array}{c}m_j+q\\ q\end{array}}\right) \prod _{l<k}(m_k-m_l)\alpha ^{m_1+\ldots +m_s} \nonumber \\&\times \sum _{p=1}^{s} (-1)^{p-1} \prod _{\begin{array}{c} l<k\\ l,k\ne p \end{array}}(m_k-m_l) u^{-m_p}. \end{aligned}$$
(B.23)

Finally, rewriting the sum over p as a contour integral, we arrive at

$$\begin{aligned} F_{N,r,s}(w)=\frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)!\prod _{l=0}^{s}j!} \frac{(1-\alpha )^{s(N-r)}}{ \alpha ^{s(s-1)/2}}w^{r-1}I_{N,r,s}(u) \end{aligned}$$
(B.24)

where the quantity \(I_{N,r,s}(u)\) is defined in (3.6). Recalling (B.1), the statement of the Proposition 3.1, representation (3.4), immediately follows.

We also mention that (B.23) can be written as

$$\begin{aligned} F_{N,r,s}(w) =\frac{(q!)^s}{\prod _{j=0}^{s-1}(q+j)!\prod _{j=0}^{s-2}j!} \frac{(1-\alpha )^{s(s+q)}}{\alpha ^{\frac{s(s-1)}{2}}} w^{r-1} \frac{u^{r+s-2}}{(1-u)^{s-1}} \det H, \end{aligned}$$
(B.25)

where the \(s\times s\) matrix H is

$$\begin{aligned} H_{jk}= {\left\{ \begin{array}{ll} \displaystyle \sum _{m=0}^{r-1}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) m^{j+k-2}\alpha ^m &{} k\ne s \\ \displaystyle \sum _{m=0}^{r-1}\left( {\begin{array}{c}m+q\\ q\end{array}}\right) m^{j-1} \left( \frac{\alpha }{u}\right) ^m&k=s. \end{array}\right. } \end{aligned}$$
(B.26)

Note that, as \(w\rightarrow 1\) (that is, \(u\rightarrow 1\)), the expected result (B.16) is reproduced from (B.25) upon taking into account that \(\det H\) has a zero of order \((s-1)\) at \(u=1\).

Appendix C: Arctic Curve for Regime II, Symmetric Domain

Here we report explicit expression for the polynomial \({\mathcal {A}}(z_1,z_2)\) describing the arctic curve, for the case \(Q=0\) of the model in Regime II (symmetric L-shaped domain). The curve is given by the equation \({\mathcal {A}}(z_1,z_2)=0\) and it is of degree 6.

We first introduce properly scaled diagonal coordinates \(Z_1\) and \(Z_2\), defining them by

$$\begin{aligned} z_1=\sqrt{\alpha }Z_1,\qquad z_2=\sqrt{1-\alpha }Z_2. \end{aligned}$$
(C.1)

Recall that the original diagonal coordinates are defined by (4.18). Note, that in terms of the new coordinates the Arctic ellipse (2.9) just reads

$$\begin{aligned} Z_1^2+Z_2^2=1. \end{aligned}$$
(C.2)

Next, we introduce the following parameterization for the scaling parameter \(R\in [1,R_\mathrm {c}]\):

$$\begin{aligned} R=\frac{1+\sqrt{\alpha }\beta }{1-\sqrt{\alpha }\beta },\qquad \beta \in [0,1]. \end{aligned}$$
(C.3)

The meaning of this re-parametrization is to simplify further expressions for the coefficients of the arctic curve, making them polynomials in \(\alpha \) and \(\beta \).

At last, we introduce coefficients \(C_{n_1n_2}\) which describe the polynomial \(A(z_1,z_2)\) appearing in (4.22), in terms of the coordinates (C.1)

$$\begin{aligned} {\mathcal {A}}(z_1,z_2)=(1-\alpha )^2\alpha ^6\sum _{0\le n_1+n_2\le 6} C_{n_1 n_2} Z_1^{n_1} Z_2^{n_2}. \end{aligned}$$
(C.4)

Note that because of the symmetry of the L-shaped domain under reflection with respect to the North-West / South-East diagonal, the arctic curve possesses the symmetry \(A(z_1,-z_2)=A(z_1,z_2)\), that is, it depends only on even powers of \(z_2\), i.e., \(C_{n_1n_2}=0\) if \(n_2\) is odd (\(n_2=1,3,5\)). This excludes 12 coefficients out of 28 in total, which describe a generic degree 6 curve.

The nonzero 16 coefficients have the following expressions:

$$\begin{aligned} C_{60}&=64 (1-\alpha )^2\left( 1-2\alpha \beta +\alpha \beta ^2\right) ^2, \nonumber \\ C_{50}&=64 (1-\alpha )^2 \left[ 1-(5+2\alpha )\beta +18\alpha \beta ^2 -2\alpha (4+7\alpha )\beta ^3+13\alpha ^2\beta ^4-3\alpha ^2\beta ^5\right] , \nonumber \\ C_{42}&=128(1-\alpha )^2\left[ 1+(2-6\alpha )\beta -2\left( 1-\alpha -3\alpha ^2\right) \beta ^2+2(1-3\alpha )\alpha \beta ^3 +\alpha ^2\beta ^4\right] , \nonumber \\ C_{40}&=16(1-\alpha )\big [1+\alpha -\left( 22-18\alpha +8\alpha ^2\right) \beta +\left( 41+13\alpha -32\alpha ^2+8\alpha ^3\right) \beta ^2 \nonumber \\&\quad -4\alpha \left( 36-25\alpha -\alpha ^2\right) \beta ^3 +\alpha \left( 52+63\alpha -85\alpha ^2\right) \beta ^4 -6\alpha ^2(13-11\alpha )\beta ^5 \nonumber \\&\quad +(15-13\alpha )\alpha ^2\beta ^6\big ], \nonumber \\ C_{32}&=128(1-\alpha )^2\big [(1-2(2+\alpha )\beta -(4-18\alpha )\beta ^2 +\left( 4-6\alpha -14\alpha ^2\right) \beta ^3 \nonumber \\&\quad -(4-13 \alpha )\alpha \beta ^4-2\alpha ^2 \beta ^5\big ], \nonumber \\ C_{30}&=32 (1-\alpha )(1-\beta )\big [\alpha -\left( 2+3\alpha +2\alpha ^2\right) \beta +\left( 22-21\alpha +19\alpha ^2\right) \beta ^2 \nonumber \\&\quad -\alpha \left( 59-48\alpha +19\alpha ^2\right) \beta ^3 +\alpha \left( 22+18\alpha -15\alpha ^2\right) \beta ^4 \nonumber \\&\quad -\alpha ^2(28-17\alpha )\beta ^5+\alpha ^2(5-3\alpha )\beta ^6\big ], \nonumber \\ C_{24}&=64 (1-\alpha )^2 \big [1+(8-12\alpha )\beta -2\left( 4-\alpha -6\alpha ^2\right) \beta ^2 +4\alpha (2-3\alpha )\beta ^3+\alpha ^2\beta ^4\big ], \nonumber \\ C_{22}&=-32(1-\alpha )\big [1+\left( 12-26\alpha +8\alpha ^2\right) \beta -\left( 15-3\alpha -35\alpha ^2+8\alpha ^3\right) \beta ^2 \nonumber \\&\quad -\left( 22-96\alpha +90\alpha ^2+4\alpha ^3\right) \beta ^3 +\left( 12-25\alpha -35\alpha ^2+63\alpha ^3\right) \beta ^4 \nonumber \\&\quad -2\alpha \left( 6-26\alpha +23\alpha ^2\right) \beta ^5 -\alpha ^2(6-7\alpha )\beta ^6\big ], \nonumber \\ C_{20}&=4(2-\alpha )\alpha -16\alpha \left( 9-8\alpha +\alpha ^2\right) \beta +4\left( 24+78\alpha -36\alpha ^2-42\alpha ^3+4\alpha ^4\right) \beta ^2 \nonumber \\&\quad -32\left( 26-41\alpha +64\alpha ^2-45\alpha ^3+3\alpha ^4\right) \beta ^3 \nonumber \\&\quad +4\left( 104+286\alpha -438\alpha ^2+322\alpha ^3-204\alpha ^4\right) \beta ^4 \nonumber \\&\quad -4\alpha \left( 105-96\alpha +33\alpha ^2-28\alpha ^3\right) \beta ^5 +2\alpha \left( 41+102\alpha -163\alpha ^2+34\alpha ^3\right) \beta ^6 \nonumber \\&\quad -8\alpha ^2\left( 16-20\alpha +5\alpha ^2\right) \beta ^7 +\alpha ^2\left( 15-18\alpha +4\alpha ^2\right) \beta ^8, \nonumber \\ C_{14}&=64(1-\alpha )^2\big [1-(3+2\alpha )\beta -(8-18\alpha )\beta ^2 +2\left( 4-2\alpha -7\alpha ^2\right) \beta ^3 \nonumber \\&\quad -\alpha (8-13\alpha )\beta ^4-\alpha ^2\beta ^5\big ], \nonumber \\ C_{12}&=-32(1-\alpha )\big [2-\alpha -\left( 6+3\alpha -2\alpha ^2\right) \beta -\left( 16-58\alpha +21\alpha ^2\right) \beta ^2 \nonumber \\&\quad +\left( 14-20\alpha -48\alpha ^2+19\alpha ^3\right) \beta ^3 +\left( 14-53\alpha +78\alpha ^2-4\alpha ^3\right) \beta ^4 \nonumber \\&\quad -\left( 4-3\alpha -16\alpha ^2+36\alpha ^3\right) \beta ^5 +\alpha \left( 4-17\alpha +20\alpha ^2\right) \beta ^6 +\alpha ^2(2-3\alpha )\beta ^7\big ], \nonumber \\ C_{10}&=4\big [4(1-\alpha )^2\beta ^2+\alpha (1-\beta )^4\big ] \big [\alpha -\left( 4-\alpha +2\alpha ^2\right) \beta +\left( 28-30 \alpha +12 \alpha ^2\right) \beta ^2 \nonumber \\&\quad -\left( 8+22 \alpha -20\alpha ^2\right) \beta ^3 +\alpha (21-16\alpha )\beta ^4-\alpha (3-2\alpha )\beta ^5\big ], \nonumber \\ C_{06}&=256(1-\alpha )^3(1-\beta )\beta (1-\alpha \beta ), \nonumber \\ C_{04}&=16 (1-\alpha )^2 \big [1-(26-8 \alpha ) \beta +\left( 41+30\alpha -8\alpha ^2\right) \beta ^2 -4 \left( 1+21\alpha +\alpha ^2\right) \beta ^3 \nonumber \\&\quad -\left( 8-30 \alpha -41 \alpha ^2\right) \beta ^4 +2 (4-13 \alpha ) \alpha \beta ^5+\alpha ^2 \beta ^6\big ], \nonumber \\ C_{02}&=-8(1-\alpha )(1-\beta )\big [2-\alpha -\left( 18-7 \alpha +2 \alpha ^2\right) \beta +\left( 32+16 \alpha +\alpha ^2+2 \alpha ^3\right) \beta ^2 \nonumber \\&\quad +\left( 24-138\alpha +29\alpha ^2-10\alpha ^3\right) \beta ^3 +\left( 10-29\alpha +138\alpha ^2-24\alpha ^3\right) \beta ^4 \nonumber \\&\quad -\left( 2+\alpha +16 \alpha ^2+32\alpha ^3\right) \beta ^5 +\alpha \left( 2-7\alpha +18\alpha ^2\right) \beta ^6 +\alpha ^2(1-2\alpha )\beta ^7\big ], \nonumber \\ C_{00}&=\left( 1-6\beta +\beta ^2\right) \left[ 4(1-\alpha )^2\beta ^2+\alpha (1-\beta )^4\right] ^2. \end{aligned}$$
(C.5)

Note that the coefficients are polynomials in \(\alpha \) of the degree at most 4, and in \(\beta \) they are all, but \(C_{00}\), of the degree at most 8; the latter is of the degree 10.

In the limit \(\beta \rightarrow 1\), that is \(R\rightarrow R_\mathrm {c}\), the arctic curve factorizes onto two straight lines \(Z_1=1\), the usual Arctic ellipse (C.2), as expected, and the point \((Z_1,Z_2)=(1,0)\) belonging to the Arctic ellipse:

$$\begin{aligned} A(z_1,z_2)\Big |_{\beta =1}= 64(1-\alpha )^6\alpha ^6 \left( Z_1-1\right) ^2 \left( Z_1^2+Z_2^2-1\right) \left[ (Z_1-1)^2+Z_2^2\right] . \end{aligned}$$
(C.6)

In the limit \(\beta \rightarrow 0\), that is \(R\rightarrow 1\), the arctic curve factorizes onto two straight lines \(Z_1=-1\), and two Arctic ellipses of radii 1 / 2:

$$\begin{aligned} A(z_1,z_2)\Big |_{\beta =0}= & {} 16(1-\alpha )^4\alpha ^6 (Z_1+1)^2 \left[ \left( Z_2-\frac{1}{2\sqrt{1-\alpha }}\right) ^2+Z_1^2-\frac{1}{4}\right] \nonumber \\&\times \left[ \left( Z_2+\frac{1}{2\sqrt{1-\alpha }}\right) ^2+Z_1^2-\frac{1}{4}\right] , \end{aligned}$$
(C.7)

as expected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colomo, F., Pronko, A.G. & Sportiello, A. Arctic Curve of the Free-Fermion Six-Vertex Model in an L-Shaped Domain. J Stat Phys 174, 1–27 (2019). https://doi.org/10.1007/s10955-018-2170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2170-2

Keywords

Navigation