Skip to main content
Log in

Semi-Markov Models and Motion in Heterogeneous Media

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we study continuous time random walks such that the holding time in each state has a distribution depending on the state itself. For such processes, we provide integro-differential (backward and forward) equations of Volterra type, exhibiting a position dependent convolution kernel. Particular attention is devoted to the case where the holding times have a power-law decaying density, whose exponent depends on the state itself, which leads to variable order fractional equations. A suitable limit yields a variable order fractional heat equation, which models anomalous diffusions in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  2. Baeumer, B., Meerschaert, M.M.: Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, 481–500 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar motions. Electr. J. Prob. 14, 1790–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electr. J. Prob. 22, 684–709 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beghin, L., Ricciuti, C.: Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator. arXiv:1608.02224

  6. Bertoin, J.: Subordinators: Examples and Appications. Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lectures Notes in Mathematics, vol. 1717. Springer, Berlin (1999)

    MATH  Google Scholar 

  7. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z.: Potential analysis of stable processes and its extensions. In: Graczyk, P., Stos, A (eds.) Lecture Notes in Mathematics 1980, pp. 87–176 (2009)

  8. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous media. J. Phys. A Math. Gen. 38, 679–684 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos, Soliton. Fract. 102, 168–174 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cox, D.R.: Renewal Theory. Wiley, New York (1962)

    MATH  Google Scholar 

  11. D’Ovidio, M., Orsingher, E., Toaldo, B.: Fractional telegraph-type equations and hyperbolic Brownian motion. Stat. Probab. Lett. 89(1), 131–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Ovidio, M., Orsingher, E., Toaldo, B.: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32(6), 1009–1045 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feller, W.: On semi-Markov processes. Proc. Natl. Acad. Sci. USA 51(4), 653–659 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fetodov, S., Falconer, S.: Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys. Rev. E 85, 031132 (2012)

    Article  ADS  Google Scholar 

  15. Garra, R., Orsingher, E., Polito, F.: State-dependent fractional point processes. J. Appl. Probab. 52, 18–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiou, N., Kiss, I.Z., Scalas, E.: Solvable non-Markovian dynamic network. Phys. Rev. E 92, 042801 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gihman, I.I., Skorohod, A.V.: The Theory of Stochastic Processes II. Springer, Berlin (1975)

    MATH  Google Scholar 

  18. Hairer, M., Iyer, G., Koralov, L., Novikov, A., Pajor-Gyulai, Z.: A fractional kinetic process describing the intermediate time behaviour of cellular flows. Ann. Probab. (to appear). arXiv:1607.01859

  19. Kian, Y., Soccorsi, E., Yamamoto, M.: A uniqueness result for time-fractional diffusion equations with space-dependent variable order. arXiv:1701.04046

  20. Kolokoltsov, V.N.: Markov Processes, Semigroups and Generators. De Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  21. Korolyuk, V., Swishchuk, A.: Semi-Markov Random Evolutions. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  22. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Le Guével, R., Véhel, J.L., Liu, L.: On two multistable extensions of stable Lévy motion and their semi-martingale representations. J. Theor. Probab. 28(3), 1125–1144 (2013)

    Article  MATH  Google Scholar 

  24. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Magdziarz, M., Schilling, R.: Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Am. Math. Soc 143, 4485–4501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Magdziarz, M., Zorawik, T.: Densities of scaling limits of coupled continuous time random walks. Fract. Calc. Appl. Anal. 19, 1488–1506 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meerschaert, M.M., Scheffler, H.P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606–1633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Fractional Cauchy problems on bounded domains. Ann. Probab. 37(3), 979–1007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meerschaert, M.M., Scheffler, H.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Prob. 41(3), 623–638 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meerschaert, M.M., Straka, P.: Semi-Markov approach to continuous time random walk limit processes. Ann. Probab. 42(4), 1699–1723 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Meerschaert, M.M., Toaldo, B.: Relaxation patterns and semi-Markov dynamics. arXiv:1506.02951

  33. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Molchanov, I., Ralchenko, K.: Multifractional Poisson process, multistable subordinator and related limit theorems. Stat. Probab. Lett. 96, 95–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  36. Orsingher, E., Ricciuti, C., Toaldo, B.: Time-inhomogeneous jump processes and variable order operators. Potential Anal. 45(3), 435–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Orsingher, E., Ricciuti, C., Toaldo, B.: On semi-Markov processes and their Kolmogorov’s integro-differential equations. arXiv:1701.02905

  38. Politi, M., Kaizoji, T., Scalas, E.: Full characterization of the fractional Poisson process. Europhys. Lett. 96(2), 1–6 (2011)

    Article  Google Scholar 

  39. Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000)

    Article  MathSciNet  Google Scholar 

  40. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  41. Scalas, E.: Five Years of Continuous-time Random Walks in Econophysics. The Complex Networks of Economic Interactions. Lecture Notes in Economics and Mathematical, vol. 567, pp. 3–16. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  42. Straka, P., Henry, B.I.: Lagging and leading coupled continuous time random walks, renewal times and their joint limit. Stoch. Process. Appl 121, 324–336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed \(C_0\)-semigroups. Potential Anal. 42(1), 115–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Toaldo, B.: Lévy mixing related to distributed order calculus, subordinators and slow diffusions. J. Math. Anal. Appl. 430(2), 1009–1036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Ricciuti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciuti, C., Toaldo, B. Semi-Markov Models and Motion in Heterogeneous Media. J Stat Phys 169, 340–361 (2017). https://doi.org/10.1007/s10955-017-1871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1871-2

Keywords

Mathematics Subject Classification

Navigation