Skip to main content
Log in

Stress Response of Granular Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Behringer, R.P.: Forces in Static Packings. Handbook of Granular Materials. CRC Press, New York (2016)

  2. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S.N., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513 (1995)

    Article  ADS  Google Scholar 

  3. Coppersmith, S.N., Liu, C.H., Majumdar, S.N., Narayan, O., Witten, T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673 (1996)

    Article  ADS  Google Scholar 

  4. Mueth, D.M., Jaeger, H.M., Nagel, S.R.: Force distribution in a granular medium. Phys. Rev. E 57, 3164 (1998)

    Article  ADS  Google Scholar 

  5. Cates, M.E., Wittmer, J.P., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841 (1998)

    Article  ADS  Google Scholar 

  6. Bouchaud, J.-P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3, 141 (2002)

    Article  ADS  Google Scholar 

  7. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  8. Erpelding, M., Amon, A., Crassous, J.: Mechanical response of granular media: new insights from diffusing-wave spectroscopy. Eur. Phys. Lett. 91, 18002 (2010)

    Article  ADS  Google Scholar 

  9. Goldenberg, C., Goldhirsch, I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)

    Article  ADS  Google Scholar 

  10. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435, 188 (2005)

    Article  ADS  Google Scholar 

  11. Goldenberg, C., Atman, A.P.F., Claudin, P., Combe, G., Goldhirsch, I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96, 168001 (2006)

    Article  ADS  Google Scholar 

  12. Goldenberg, C., Goldhirsch, I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phys. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  13. Yan, L., Bouchaud, J.-P., Wyart, M.: Edge mode amplification in disordered elastic networks. arXiv:1608.07222 (2016)

  14. Reydellet, G., Clément, E.: Green’s function probe of a static granular piling. Phys. Rev. Lett. 86, 3308 (2001)

    Article  ADS  Google Scholar 

  15. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Claudin, P., Behringer, R.P., Clément, E.: From the stress response function (back) to the sand pile “dip”. Eur. Phys. J E 17, 93 (2005)

    Article  Google Scholar 

  16. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Combe, G., Claudin, P., Behringer, R.P., Clément, E.: Sensitivity of the stress response function to packing preparation. J. Phys. Condens. Matter 17, S2391 (2005)

    Article  ADS  Google Scholar 

  17. Atman, A.P.F., Claudin, P., Combe, G., Mari, R.: Mechanical response of an inclined frictional granular layer approaching unjamming. Europhys. Lett. 101, 44006 (2013)

    Article  ADS  Google Scholar 

  18. Gland, N., Wang, P., Makse, H.A.: Numerical study of the stress response of two-dimensional dense granular packings. Eur. Phys. J. E 20, 179 (2006)

    Article  Google Scholar 

  19. Bouchaud, J.P., Claudin, P., Levine, D., Otto, M.: Force chain splitting in granular materials: a mechanism for large-scale pseudo-elastic behaviour. Eur. Phys. J. E 4, 451 (2001)

    Article  Google Scholar 

  20. Socolar, J.E.S., Claudin, P., Schaeffer, D.G.: Directed force chain networks and stress response in static granular materials. Eur. Phys. J. E 7, 353 (2002). Erratum: Eur. Phys. J. E 8, 453 (2002)

  21. Bouchaud, J.-P.: In: Bouchaud, J.-P., Barrat, J.L., Feigelman, M., Kurchan, J., Dalibard, J. (eds)Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, vol. 77, pp. 185. Les Ulis: EDP Sciences (2003)

  22. Narayan, O.: Vector lattice model for stresses in granular materials. Phys. Rev. E 63, 010301 (2000)

    Article  Google Scholar 

  23. Tighe, B.P.: Granular Lattice Models with Gravity, Powders and Grains 2009, American Institute of Physics, pp. 305–308 (2009)

  24. Bouchaud, J.-P., Cates, M.E., Claudin, P.: Stress distribution in granular media and nonlinear wave equation. J. Phys. I 5, 639 (1995)

    Google Scholar 

  25. Vanel, L., Howell, D., Clark, D., Behringer, R.P., Clément, E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60, R5040 (1999)

    Article  ADS  Google Scholar 

  26. Satake, M.: New formulation of graph-theoretical approach in the mechanics of granular materials. Mech. Mater. 16, 65 (1993)

    Article  Google Scholar 

  27. Ball, R.C., Blumenfeld, R.: Stress field in granular systems: loop forces and potential formulation. Phys. Rev. Lett. 88, 115505 (2002)

    Article  ADS  Google Scholar 

  28. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435 (1999)

    Article  ADS  Google Scholar 

  29. Ramola, K., Chakraborty, B.: Disordered contact networks in jammed packings of frictionless disks. J. Stat. Mech. 2016, 114002 (2016)

    Article  MathSciNet  Google Scholar 

  30. Ramola, K., Chakraborty, B.: Scaling theory for the frictionless unjamming transition. Phys. Rev. Lett. 118, 138001 (2017)

    Article  ADS  Google Scholar 

  31. Henkes, S., Chakraborty, B.: Statistical mechanics framework for static granular matter. Phys. Rev. E 79, 061301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. DeGiuli, E.: Continuum Limits of Granular Systems, Ph.D. Thesis, University of British Columbia (2013)

  33. DeGiuli, E., McElwaine, J.: Laws of granular solids: geometry and topology. Phys. Rev. E 84, 041310 (2011)

    Article  ADS  Google Scholar 

  34. Hastings, M.: Random vibrational networks and the renormalization group. Phys. Rev. Lett. 90, 148702 (2003)

    Article  ADS  Google Scholar 

  35. Burioni, R., Cassi, D., Destri, C.: \(n \rightarrow \infty \) limit of \(O(n)\) ferromagnetic models on graphs. Phys. Rev. Lett. 85, 1496 (2000)

    Article  ADS  Google Scholar 

  36. Ellenbroek, W., Somfai, E., van Saarloos, W., van Hecke, M.: Force Response as a Probe of the Jamming Transition, Powders and Grains 2005, p. 377, Taylor and Francis (2005)

  37. Slanina, F.: Localization of eigenvectors in random graphs. Eur. Phys. J. B 85, 361 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  38. Clark, T.B.P., Del Maestro, A.: Moments of the inverse participation ratio for the Laplacian on finite regular graphs. arXiv:1506.02048 (2015)

  39. Abrahams, E. (ed.): 50 Years of Anderson Localization. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  40. Tighe, B.P., Vlugt, T.J.H.: Stress fluctuations in granular force networks. J. Stat. Mech. 2011, P04002 (2011)

    Article  Google Scholar 

  41. Sarkar, S., Bi, D., Zhang, J., Behringer, R.P., Chakraborty, B.: Origin of rigidity in dry granular solids. Phys. Rev. Lett. 111, 068301 (2013)

    Article  ADS  Google Scholar 

  42. Sarkar, S., Bi, D., Zhang, J., Ren, J., Behringer, R.P., Chakraborty, B.: Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93, 042901 (2016)

    Article  ADS  Google Scholar 

  43. Snoeijer, J.H., Vlugt, T.J.H., van Hecke, M., van Saarloos, W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92, 054302 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir Ramola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramola, K., Chakraborty, B. Stress Response of Granular Systems. J Stat Phys 169, 1–17 (2017). https://doi.org/10.1007/s10955-017-1857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1857-0

Keywords

Navigation