Skip to main content
Log in

The Marginally Stable Bethe Lattice Spin Glass Revisited

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Bethe lattice spins glasses are supposed to be marginally stable, i.e. their equilibrium probability distribution changes discontinuously when we add an external perturbation. So far the problem of a spin glass on a Bethe lattice has been studied only using an approximation where marginal stability is not present, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a marginally stable solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non-perturbative approach to the Bethe lattice spin glass problem using approximations that should be hopefully consistent with marginal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The expression marginal stability was also used to characterize some off-equilibrium metastable states [13,14,15] with a slightly different meaning.

  2. I apologize for using here the replica jargon; this could be avoided in many cases because the replica language statements have been translated into the probabilistic language in most of the cases. Unfortunately, the stability analysis based on infinitesimal perturbations is not yet been translated into a probabilistic language and I cannot avoid using the replica language.

  3. Similar studies can be done on random regular lattices, i.e. on the fixed connectivity lattice studied in many papers, e.g. [45,46,47].

  4. I use the notation h(i) and not \(h_i\) in order to stress that here i is not a node of the original graph. Cavity equations can also be written on a given graph, usually under the name of belief propagation equations. I will not discuss here this approach.

  5. We are speaking of many equilibrium states for a finite system, while many equilibrium states should be present only in the infinite volume limit [28]. However the considerations we present have only a heuristic value.

  6. As before K is a random Poisson variable with average z.

  7. I am grateful to Dmitry Panchenko for clarifying this point to me.

  8. In [43] the authors introduced a population of populations in order to formulate the problem in such a way that numerical computations are possible.

  9. In the first line of Eq. (46) \(\rho _1(\theta _0,\theta _1)\) is a function, in the second line of the same equation \(\rho \) is a variable.

  10. From the numerical viewpoint [62] it may also be convenient to do the computation at finite, but large r, provided that the computational weight does not increase too fast with r.

  11. If the reader does not like white noises, he can reformulate everything in terms of Brownian motions \(B(x)=\int _0^x \eta (x)\): we could also use Ito stochastic calculus.

  12. The function x(q) is the inverse of the function x(q). The functional F[x(q)] is concave: the concavity of this functional (proved in [66]) is surprising and counter-intuitive, at least to me.

  13. The function \(\text{ Int }(y)\) denotes the integer part of the real number y.

  14. The variable K is as usual a random Poisson number with average z.

  15. In the SK model A(xz) does not depends on z and \(C(z)=z\).

  16. If we compute the annealed free energy \(F(x)\equiv \lim _{N\rightarrow \infty }-{\log \left( \overline{Z^N_J(\beta )^x}\right) /(\beta N x)}\) in presence of a magnetic field, we can derive similar formulae where the quantity \(h(x|x_0,h_0)_\eta \) has a more important physical role.

References

  1. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  2. Parisi, G.: Field Theory, Disorder and Simulations. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  3. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792 (1975)

    Article  ADS  Google Scholar 

  4. De Dominicis, C., Kondor, I.: Eigenvalues of the stability matrix for Parisi solution of the long-range spin-glass. Phys. Rev. B 27, 606 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Talagrand, M.: The generalized Parisi formula. C. R. Math. 337, 111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Talagrand, M.: The Parisi formula. Ann. Math. 163, 221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Talagrand, M.: Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  10. Panchenko, D.: The Sherrington–Kirkpatrick model: an overview. J. Stat. Phys. 149, 362 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Panchenko, D.: Introduction to the SK model. arXiv:1412.0170 (2014)

  12. Contucci, P., Giardinà, C.: Perspectives on Spin Glasses. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  13. Kirkpatrick, T.R., Thirumalai, D.: Dynamics of the structural glass transition and the p-spin—interaction spin-glass model. Phys. Rev. Lett. 58, 2091 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kirkpatrick, T.R., Thirumalai, D.: p-spin-interaction spin-glass models: connections with the structural glass problem. Phys. Rev. B 36, 5388 (1987)

    Article  ADS  Google Scholar 

  15. Kirkpatrick, T.R., Thirumalai, D., Wolynes, P.G.: Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045 (1989)

    Article  ADS  Google Scholar 

  16. Panchenko, D.: Free energy in the Potts spin glass. arXiv:1512.00370 (2015)

  17. Panchenko, D.: Free energy in the mixed p-spin models with vector spins. arXiv:1512.04441 (2015)

  18. Panchenko, D.: On the K-sat model with large number of clauses. arXiv:1608.06256 (2016)

  19. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean field spin glasses. Rigorous results. In: Annales Henri Poincaré, vol. 16, p. 691. Springer, Berlin (2015)

  20. Panchenko, D.: The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Prob. 43, 3494 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Panchenko, D.: Chaos in temperature in generic 2p-spin models. Commun. Math. Phys. 346, 703 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chen, W.-K., Panchenko, D.: Temperature chaos in some spherical mixed p-spin models. arXiv:1608.02478 (2016)

  23. De Dominicis, C., Kondor, I.: On spin glass fluctuations. J. Phys. Lett. 45, 205 (1984)

    Article  Google Scholar 

  24. Alvarez Banos, R., Cruz, A., Fernandez, L.A., Gil-Narvion, J.M., Gordillo-Guerrero, A., Guidetti, M., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., Monforte-Garcia, J., Munoz Sudupe, A., Navarro, D., Parisi, G., Perez-Gaviro, S., Ruiz-Lorenzo, J.J., Schifano, S.F., Seoane, B., Tarancon, A., Tripiccione, R., Yllanes, D.: Static versus dynamic heterogeneities in the D= 3 Edwards-Anderson-Ising spin glass. Phys. Rev. Lett. 105, 177202 (2010)

    Article  ADS  Google Scholar 

  25. Alvarez Banos, R., Cruz, A., Fernandez, L.A., Gil-Narvion, J.M., Gordillo-Guerrero, A., Guidetti, M., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., Monforte-Garcia, J., Munoz Sudupe, A., Navarro, D., Parisi, G., Perez-Gaviro, S., Ruiz-Lorenzo, J.J., Schifano, S.F., Seoane, B., Tarancon, A., Tripiccione, R., Yllanes, D.: Nature of the spin-glass phase at experimental length scales. J. Stat. Mech. P06026 (2010)

  26. Wyart, M., Silbert, L.E., Nagel, S.R., Witten, T.A.: Effects of compression on the vibrational modes of marginally jammed solids. Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  27. DeGiuli, E., Laversanne-Finot, A., Düring, G.A., Lerner, E., Wyart, M.: Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids. Soft Matter 10, 5628 (2014)

    Article  ADS  Google Scholar 

  28. Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J., Zuliani, F.: Replica symmetry breaking in short-range spin glasses: theoretical foundations and numerical evidences. J. Stat. Phys. 98, 973 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kurchan, J., Parisi, G., Zamponi, F.: Exact theory of dense amorphous hard spheres in high dimension I. The free energy. J. Stat. Mech. P10012 (2012)

  30. Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition. J. Phys. Chem. B 117, 12979 (2013)

    Article  Google Scholar 

  31. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Fractal free energy landscapes in structural glasses. Nat. Commun. 5, 3725 (2014)

    Article  ADS  Google Scholar 

  32. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution. J. Stat. Mech. P10009 (2014)

  33. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Glass and jamming transitions: from exact results to finite-dimensional descriptions arXiv:1605.03008 (2016)

  34. Ruelle, D.: A mathematical reformulation of Derrida’s REM and GREM. Commun. Math. Phys. 108, 225 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Bolthausen, E., Sznitman, A.S.: On Ruelle’s probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Panchenko, D.: Spin glass models from the point of view of spin distributions. Ann. Prob. 41, 1315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Panchenko, D.: Hierarchical exchangeability of pure states in mean field spin glass models. Prob. Theory Relat. Fields 161, 619 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111, 535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Franz, S., Leone, M., Toninelli, F.L.: Replica bounds for diluted non-Poissonian spin systems. J. Phys. A 43, 10967 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Aizenman, M., Sims, R., Starr, S.L.: Extended variational principle for the Sherrington–Kirkpatrick spin-glass model. Phys. Rev. B 68, 214403 (2003)

    Article  ADS  Google Scholar 

  41. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. 177, 383 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Panchenko, D.: Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass models. J. Stat. Phys. 162, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  44. Viana, L., Bray, A.J.: Phase diagrams for dilute spin glasses. J. Phys. C 18, 3037 (1985)

    Article  ADS  Google Scholar 

  45. Fu, Y.T., Anderson, P.W.: Application of statistical mechanics to NP-complete problems in combinatorial optimisation. J. Phys. A 19, 1065 (1986)

    Article  MathSciNet  Google Scholar 

  46. Mézard, M., Parisi, G.: Mean-field theory of randomly frustrated systems with finite connectivity. EPL 3, 1067 (1987)

    Article  ADS  Google Scholar 

  47. De Dominicis, C.: Replica symmetry breaking in finite connectivity systems: a large connectivity expansion at finite and zero temperature. J. Phys. A 22, L775 (1989)

    Article  ADS  Google Scholar 

  48. Parisi, G.: Glasses, replicas and all that. In: Barrat, J.L. et al. (eds.) Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter: Les Houches Session LXXVII. Springer, Berlin (2005)

  49. Morone, F., Caltagirone, F., Harrison, E., Parisi, G.: Replica theory and spin glasses. arXiv:1409.2722 (2014)

  50. Guerra, F.: About the overlap distribution in mean field spin glass models. Int. J. Mod. Phys. B 10, 1675 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ghirlanda, S., Guerra, F.: General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31, 9149 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Aizenman, M., Contucci, P.: On the stability of the quenched state in mean-field spin-glass models. J. Stat. Phys. 92, 765 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Parisi, G.: On the probability distribution of the overlap in spin glasses. Int. J. Mod. Phys. B 18, 733 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Parisi, G., Ricci-Tersenghi, F.: On the origin of ultrametricity. J. Phys. A 33, 113 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Parisi, G.: On the branching structure of the tree of states in spin glasses. J. Stat. Phys. 72, 857 (1993)

    Article  ADS  MATH  Google Scholar 

  56. Mézard, M., Parisi, G.: The cavity method at zero temperature. J. Stat. Phys. 111, 1 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812 (2002)

    Article  ADS  Google Scholar 

  58. Mézard, M., Virasoro, M.A.: The microstructure of ultrametricity. J. Phys. 46, 1293 (1985)

    Article  MathSciNet  Google Scholar 

  59. Goldschmidt, C., Martin, J.: Random recursive trees and the Bolthausen-Sznitman coalescent. E. J. Prob. 10, 718 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ruzmaikina, A., Aizenman, M.: Characterization of invariant measures at the leading edge for competing particle systems. Ann. Prob. 33, 82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. Parisi, G.: On spin glass theory. Phys. Scr. T19A, 27 (1987)

    Article  ADS  Google Scholar 

  62. Parisi, G., Ricci-Tersenghi, F., Yllanes, D.: Explicit generation of the branching tree of states in spin glasses. J. Stat. Mech. P05002 (2015)

  63. Mézard, M., Parisi, G., Virasoro, M.A.: Random free energies in spin glasses. J. Phys. Lett. 46, 217 (1985)

    Article  Google Scholar 

  64. Guerra, F., Tolinelli, F.L.: The high temperature region of the Viana–Bray diluted spin glass model. J. Stat. Phys. 115, 531 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Sen, S.: Optimization on sparse random hypergraphs and spin glasses. arXiv:1606.02365 (2016)

  66. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335, 1429 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Parisi, G.: Spin glasses. In: Cabibbo, N. (ed.) Proceedings of the International School of Physics ’Enrico Fermi’ Course XCII: Elementary Particles. North-Holland, Amsterdam (1984)

  68. Sommers, H.-J., Dupont, W.: Distribution of frozen fields in the mean-field theory of spin glasses. J. Phys. C 7, 5785 (1984)

    Article  ADS  Google Scholar 

  69. Crisanti, A., Rizzo, T.: Analysis of the \( \infty \)-replica symmetry breaking solution of the Sherrington–Kirkpatrick model. Phys. Rev. E 65, 046137 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Parisi, G., Rizzo, T.: Large deviations of the free energy in diluted mean-field spin-glass. J. Phys. A 43, 045001 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Parisi, G., Rizzo, T.: Chaos in temperature in diluted mean-field spin-glass. J. Phys. A 43, 235003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Parisi, G., Tria, F.: Spin glasses on Bethe lattices for large coordination number. Eur. Phys. J. B 30, 533 (2002)

    Article  ADS  Google Scholar 

  73. Boschi, G.: Rome University La Sapienza thesis, unpublished (2016)

  74. Morone, F., Parisi, G., Ricci-Tersenghi, F.: Large deviations of correlation functions in random magnets. Phys. Rev. B 89, 214202 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Dmitry Panchenko for many discussions and clarifications. I would like also to thank Valerio Astuti, Silvio Franz, Carlo Lucibello, Federico Ricci-Tersenghi, and Pierfrancesco Urbani for a critical reading of the manuscript. This work has been supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (Grant Agreement No. [694925]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Parisi.

Additional information

I would like to dedicate this paper to the memory of my good friend Leo Kadanoff. I presented for the first time my spin glass theory at a Les Houches winter workshop in 1980 in an after dinner seminar. Leo was among the public, quite near to me in the front row, and I was comforted by his facial expressions of interest and approbation during the seminar; Leo congratulated with me after the seminar. His reactions were an important confirmation that I was on the right track: I was very grateful to him.

Appendix: The Cavity Equations in the Case of Broken Replica Symmetry

Appendix: The Cavity Equations in the Case of Broken Replica Symmetry

The cavity equations are often a direct way to find the maximum of the free energy.

At this end it is convenient to introduce the cavity equations for the probability over the descriptors i.e. \(\mathcal{P}_{}[\mathcal{D}]\). These equations can be derived heuristically by considering a N nodes system to which we add an extra node. A natural requirement is that the properties of the spin the extra node is the same of the others N spins. Alternatively, we could remove one spin from a \(N+1\) system forming a cavity, hence the name “cavity” method.

It has been proved [36] that a stochastically stable probability \(\mathcal{P}_{}[\mathcal{D}]\) that maximizes the free energy, should also satisfy of some equations that generalize the naive cavity equations (3). They are defined as follows. For each state \(\alpha \) we construct a new set of fields and weights using the fields \(vh_\alpha \) that are uncorrelated in i and correlated in \(\alpha \).

$$\begin{aligned} h'_\alpha =U(\vec {J},\vec {h}_\alpha ) \ \ \ w'_\alpha ={w_\alpha \Delta ^{node}_K(\vec {J},\vec {h}_\alpha )\over Z}\, , \end{aligned}$$
(72)

Z being a normalisation factor that enforces \(\sum w'_\alpha =1\). The quantities \(h'_\alpha \) and \(w'_\alpha \) are the fields and weights corresponding to new spin. These equations can be formally written as

$$\begin{aligned} \mathcal{P}'= \mathcal{C}[\mathcal{P}]. \end{aligned}$$
(73)

According to the heuristic argument we finally impose that the probability distribution of the \(\{w'_\alpha ,h'_\alpha \}\) (i.e. \(\mathcal{P}'\) is again \(\mathcal{P}[\mathcal{D}]\). This constraint is called the cavity equations for \(\mathcal{P}_{}[\mathcal{D}]\) [40, 42, 43]: the cavity equations (\(\mathcal{P}'= \mathcal{C}[\mathcal{P}]\)) are valid in general for stochastically stable distributions, not only in the reproducible case.

The cavity equations can be considered the moral equivalent of

$$\begin{aligned} {\delta \mathcal{F}[\mathcal{P}_{}[\mathcal{D}]]\over \delta \mathcal{P}_{}[\mathcal{D}]}=0 \, . \end{aligned}$$
(74)

These equations are a necessary condition but not a sufficient condition. The cavity equations have many solutions; we need to find out the one that maximizes the free energy \(\mathcal{F}[\mathcal{P}_{}[\mathcal{D}]]\).

In the heuristic approach one often requires a further condition of stability. It can formally written as follows. Let us consider a solution (\(\mathcal{P}^*[\mathcal{D}]])\) of the cavity equation (74). For small \(\delta \mathcal{P}[\mathcal{D}]\) we can write a Taylor expansion

$$\begin{aligned} \mathcal{F}[\mathcal{P}^*[\mathcal{D}]+\delta \mathcal{P}[\mathcal{D}]]=\mathcal{F}[\mathcal{P}^*[\mathcal{D}]]+(\delta \mathcal{P}[\mathcal{D}], \mathbf{\large H}\, \delta \mathcal{P}[\mathcal{D}]) +O(\delta \mathcal{P}[\mathcal{D}]^3), \end{aligned}$$
(75)

where the linear term in \(\delta \mathcal{P}[\mathcal{D}]\) is absent as effect of the cavity equation (74).

This equation defines a generalized Hessian (i.e. \(\mathbf{\large H}\)) that plays a crucial role in the heuristic approach.

Let us call \({\large H}_0\) the largest eigenvalues of \(\mathbf{H}\) (the so called replicon eigenvalue). It natural to assume that if \(\mathcal{P}^*[\mathcal{D}]\) maximize the free energy only if

$$\begin{aligned} {\large H}_0\le 0, \end{aligned}$$
(76)

or equivalently the matrix \(\mathbf{H}\) is non-positive, This condition generalizes the De Almeida–Thouless (DAT) stability condition. It is interesting to note that the DAT stability condition is usually equivalent to the condition:

$$\begin{aligned} \lambda \equiv \lim _{l\rightarrow \infty }\frac{1}{l}\log \left( {\overline{(\langle \sigma _0 \sigma _l\rangle _c)^2 }\over z^l}\right) \le 0, \end{aligned}$$
(77)

where \(\langle \sigma _0 \sigma _l\rangle _c\) is the connected correlation function of two spins at distance l on the infinite Bethe Lattice [74].

It is also conjectured that this stability condition in saturated when the replica symmetry is spontaneously broken in a continuous way:

$$\begin{aligned} {\large H}_0=0 \ \ \ \text{ and } \ \ \ \ \lambda =0. \end{aligned}$$
(78)

Indeed in all known cases, the saturation of DAT stability condition is the necessary condition for marginal stability.

It is conjectured that for spin glasses on the Bethe lattice when replica symmetry is spontaneously broken at r steps we have

$$\begin{aligned} {\large H}_0>0. \end{aligned}$$
(79)

This conjecture implies that the stability condition forces us to consider continuous RSB. This is the reason we are interested in finding approximations to spin glasses such that Eq. (78) is satisfied, maybe in some restricted space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisi, G. The Marginally Stable Bethe Lattice Spin Glass Revisited. J Stat Phys 167, 515–542 (2017). https://doi.org/10.1007/s10955-017-1724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1724-z

Keywords

Navigation