Skip to main content
Log in

Noisy Hegselmann-Krause Systems: Phase Transition and the 2R-Conjecture

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The classic Hegselmann-Krause (HK) model for opinion dynamics consists of a set of agents on the real line, each one instructed to move, at every time step, to the mass center of the agents within a fixed distance R. In this work, we investigate the effects of noise in the continuous-time version of the model as described by its mean-field Fokker-Planck equation. In the presence of a finite number of agents, the system exhibits a phase transition from order to disorder as the noise increases. We introduce an order parameter to track the phase transition and resolve the corresponding phase diagram. The system undergoes a phase transition for small R but none for larger R. Based on the stability analysis of the mean-field equation, we derive the existence of a forbidden zone for the disordered phase to emerge. We also provide a theoretical explanation for the well-known 2R conjecture, which states that, for a random initial distribution in a fixed interval, the final configuration consists of clusters separated by a distance of roughly 2R. Our theoretical analysis confirms previous simulations and predicts properties of the noisy HK model in higher dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Axelrod, R.M.: The Evolution of Cooperation. Basic books, New York (2006)

    MATH  Google Scholar 

  2. Bhattacharyya, A., Braverman, M., Chazelle, B., Nguyen, H. L.: On the convergence of the Hegselmann-Krause system. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pp. 61–66. ACM, New York (2013)

  3. Blondel, V. D., Hendrickx, J. M., Tsitsiklis, J. N.: On the 2r conjecture for multi-agent systems. In Control Conference (ECC), 2007 European, IEEE, pp. 874–881 (2007)

  4. Blondel, V.D., Hendrickx, J.M., Tsitsiklis, J.N.: On Krause’s multi-agent consensus model with state-dependent connectivity. IEEE Trans. Autom. Control 54(11), 2586–2597 (2009)

    Article  MathSciNet  Google Scholar 

  5. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)

    Article  ADS  Google Scholar 

  6. Chazelle, B.: The total s-energy of a multiagent system. SIAM J. Control Optim. 49(4), 1680–1706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.: An algorithmic approach to collective behavior. J. Stat. Phys. 158, 514–548 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chazelle, B.: Diffusive influence systems. SIAM J. Comput. 44(5), 1403–1442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chazelle, B., Jiu, Q., Li, Q., Wang, C.: Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics. arXiv preprint arXiv:1510.06487 (2015)

  10. Chazelle, B., and Wang, C.: Inertial Hegselmann-Krause systems. In Proceedings of the IEEE American Control Conference (ACC) , pp. 1936–1941. (2016)

  11. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–98 (2000)

    Article  Google Scholar 

  12. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, UK (2010)

    Book  MATH  Google Scholar 

  13. Fornberg, B.: A Practical Guide to Pseudospectral Methods, vol. 1. Cambridge University Press, Cambridge, UK (1998)

    MATH  Google Scholar 

  14. Fortunato, S.: On the consensus threshold for the opinion dynamics of Krause-Hegselmann. Int. J. Mod. Phys. C 16(02), 259–270 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Garnier, J., Papanicolaou, G., Yang, T.: Consensus convergence with stochastic effects. CoRR abs/1508.07313 (2015)

  16. Hendrickx, J., Blondel, V.: Convergence of different linear and non-linear Vicsek models. In Proc. 17th Int. Symp. Math. Theory Networks Syst. (MTNS 2006), pp. 1229–1240. (2006)

  17. Jabin, P.-E., Motsch, S.: Clustering and asymptotic behavior in opinion formation. J. Differ. Equ. 257(11), 4165–4187 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  19. Jiang, K., Wang, C., Huang, Y., Zhang, P.: Discovery of new metastable patterns in diblock copolymers. Commun. Computat. Phys. 14: 443–460 (2013)

  20. Kurz, S.: Optimal control of the freezing time in the Hegselmann-Krause dynamics. J. Differ. Equ. Appl. 21(8), 633–648 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lorenz, J.: A stabilization theorem for dynamics of continuous opinions. Phys. A 355(1), 217–223 (2005)

    Article  MathSciNet  Google Scholar 

  22. Lorenz, J.: Consensus strikes back in the Hegselmann-Krause model of continuous opinion dynamics under bounded confidence. J. Artif. Soc. Soc. Simul. 9(1), 8 (2006)

    Google Scholar 

  23. Martínez, S., Bullo, F., Cortés, J., Frazzoli, E.: On synchronous robotic networks — part II: time complexity of rendezvous and deployment algorithms. IEEE Trans. Autom. Control 52(12), 2214–2226 (2007)

    Article  Google Scholar 

  24. Martinsson, A.: An improved energy argument for the Hegselmann–Krause model. J. Differ. Equ. Appl, 1–6 (2015)

  25. Mohajer, S., Touri, B.: On convergence rate of scalar Hegselmann-Krause dynamics. In Proceedings of the IEEE American Control Conference (ACC) (2013)

  26. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  27. Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge, UK (1998)

    MATH  Google Scholar 

  29. Pineda, M., Toral, R., Hernández-García, E.: The noisy Hegselmann-Krause model for opinion dynamics. Eur. Phys. J. B 86(12), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  30. Touri, B., Nedić, A.: Discrete-time opinion dynamics. In 2011 Conference Record of the Forty-Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2011)

  31. Wedin, E., Hegarty, P.: A quadratic lower bound for the convergence rate in the one-dimensional Hegselmann-Krause bounded confidence dynamics. Discret. Comput. Geom. 53(2), 478–486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous referees for many useful comments and suggestions. Bernard Chazelle’s work is supported in part by NSF Grants CCF-0832797, CCF-0963825, and CCF-1016250; Weinan E’s work is supported by DOE grant DE-SC0009248 and ONR grant N00014-13-1-0338; Qianxiao Li’s work is supported by Agency for Science, Technology and Research, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, Q., E, W. et al. Noisy Hegselmann-Krause Systems: Phase Transition and the 2R-Conjecture. J Stat Phys 166, 1209–1225 (2017). https://doi.org/10.1007/s10955-017-1718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1718-x

Keywords

Navigation