Skip to main content
Log in

The Ising Model on the Random Planar Causal Triangulation: Bounds on the Critical Line and Magnetization Properties

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate a Gibbs (annealed) probability measure defined on Ising spin configurations on causal triangulations of the plane. We study the region where such measure can be defined and provide bounds on the boundary of this region (critical line). We prove that for any finite random triangulation the magnetization of the central spin is sensitive to the boundary conditions. Furthermore, we show that in the infinite volume limit, the magnetization of the central spin vanishes for values of the temperature high enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ambjørn, J., Anagnostopoulos, K.N., Loll, R.: A new perspective on matter coupling in 2d quantum gravity. Phys. Rev. D 60, 104035 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ambjørn, J., Durhuus, B., Fröhlich, J.: Diseases of triangulated random surface models, and possible cures. Nucl. Phys. B 257, 433–449 (1985)

    Article  ADS  Google Scholar 

  3. Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry: A Statistical Field Theory Approach. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  4. Ambjørn, J., Loll, R.: Non-perturbative lorentzian quantum gravity, causality and topology change. Nucl. Phys. B 536, 407–434 (1998)

    Article  ADS  Google Scholar 

  5. Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press. http://tpsrv.anu.edu.au/Members/baxter/book (1982)

  6. Bonzom, V., Gurau, R., Rivasseau, V.: The Ising Model on random lattices in arbitrary dimensions. Phys. Lett. B 711, 88–96 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. Boulatov, D.V., Kazakov, V.A.: The Ising Model on random planar lattice: the structure of the phase transition and the exact critical exponents. Phys. Lett. B 186, 379–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Brézin, E., Douglas, M.R., Kazakov, V., Shenker, S.H.: The Ising model coupled to 2d gravity: a nonperturbative analysis. Phys. Lett. B 237, 43–46 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. David, F.: A model of random surfaces with non-trivial critical behaviour. Nucl. Phys. B 257, 543–576 (1985)

    Article  ADS  Google Scholar 

  10. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl. Prob. 20, 565–592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durhuus, B., Jonsson, T., Wheater, J.F.: The spectral dimension of generic trees. J. Stat. Phys. 128, 1237–1260 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Durhuus, B., Jonsson, T., Wheater, J.F.: On the spectral dimension of causal triangulations. J. Stat. Phys. 139, 859–881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Durhuus, B., Napolitano, G.M.: Generic Ising trees. J. Phys. A 45, 185004 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hernandez, J.C.: Critical region for an Ising model coupled to causal dynamical triangulations. arXiv:1402.3251v3 [math-ph] (2014)

  15. Hernandez, J.C., Suhov, Y., Yambartsev, A., Zohren, S.: Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. J. Math. Phys. 54, 063301 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kazakov, V.A.: Ising model on a dynamical planar random lattice: exact solution. Phys. Lett. A 119, 140–144 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kazakov, V.A., Kostov, I.K., Migdal, A.A.: Critical properties of randomly triangulated planar random surfaces. Phys. Lett. B 157, 295–300 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  18. Krikun, M., Yambartsev, A.: Phase transition for the Ising model on the critical Lorentzian triangulation. J. Stat. Phys. 148(3), 422–439 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Malyshev, V.A.: Gibbs and quantum discrete spaces. Russ. Math. Surv. 56, 917–972 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malyshev, V., Yambartsev, A., Zamyatin, A.: Two-dimensional Lorentzian models. Mosc. Math. J. 1, 439–456 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Bergfinnur Durhuus for the helpful discussions on the subject. This work was partially supported by the Swedish Research Council through the Grant No. 2011-5507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Napolitano.

Appendices

Appendix 1: Proof of Lemma 2

Consider the multiple series

$$\begin{aligned} W_{n+1,l}(x) = \sum _{k_1 = 1}^\infty \cdots \sum _{k_n = 1}^\infty \prod _{i=1}^{n} \left( {\begin{array}{c}k_{i+1}+k_i-1\\ k_i-1\end{array}}\right) x^{k_i}, \end{aligned}$$
(A.1)

with \(k_{n+1}=l\). Summing over \(k_1\) we obtain

$$\begin{aligned} \sum _{k_1 = 1}^\infty \left( {\begin{array}{c}k_1+k_2-1\\ k_1 -1\end{array}}\right) x^{k_1} = \frac{x}{1-x} \left( \frac{1}{1-x} \right) ^{k_2} = x B_1^{k_2+1}, \end{aligned}$$
(A.2)

where we denoted \(B_1 = (1- x)^{-1}\). Inserting it in the equation and summing over \(k_2\) we obtain

$$\begin{aligned} \sum _{k_2 = 1}^\infty \left( {\begin{array}{c}k_2+k_3-1\\ k_2 -1\end{array}}\right) x B_1 (x B_1)^{k_2} = \frac{x^2 B_1^2}{1 - x B1} \left( \frac{1}{1 - x B_1}\right) ^{k_3} = x^2 B_1^2 B_2^{k_3+1}, \end{aligned}$$
(A.3)

where \(B_2 = (1- x B_1)^{-1}\). Summing over the remaining \(k_i\)’s, we obtain

$$\begin{aligned} W_{n+1,l}(x) = x^n B_n(x)^{l+1}\prod _{i=1}^{n-1} B_i(x)^2, \end{aligned}$$
(A.4)

where \(B_i(x)\) is the solution to the recursion relation

$$\begin{aligned} B_i&= \frac{1}{1-x B_{i-1}}, \nonumber \\ B_1&= \frac{1}{1-x}, \end{aligned}$$
(A.5)

This reads

$$\begin{aligned} B_i(x) = 2 \frac{c_+(x)^{i+1} - c_-(x)^{i+1}}{c_+(x)^{i+2} - c_-(x)^{i+2}}, \end{aligned}$$
(A.6)

with

$$\begin{aligned} c_\pm (x) = 1 \pm \sqrt{1-4x}. \end{aligned}$$
(A.7)

For \(0<x<1/4\), substituting (A.6) into (A.4) we get

$$\begin{aligned} W_{n+1,l}(x) = 2^{l+3} (1-4x) (4x)^n \frac{(c_+(x)^{n+1} - c_-(x)^{n+1})^{l-1}}{(c_+(x)^{n+2} - c_-(x)^{n+2})^{l+1}}, \end{aligned}$$
(A.8)

which gives

$$\begin{aligned} \lim _{n \rightarrow \infty } W_{n,l}(x) = 0. \end{aligned}$$
(A.9)

In particular we have

$$\begin{aligned} W_{n+1,l}(x) \sim f_{l}(x) \left( \frac{4x}{c_+(x)^2} \right) ^{n}, \quad \text {for } n \rightarrow \infty , \end{aligned}$$
(A.10)

where

$$\begin{aligned} f_l(x) = (1-4x) \left( \frac{2}{c_+(x)} \right) ^{l+3} . \end{aligned}$$
(A.11)

This yields the first statement of Lemma 2. The rest follows directly by the results of [20].

Appendix 2: Proof of Corollary 4

We have that, for any \(x \in (0,1/4)\), \(B_i(x)\) is monotonically increasing

$$\begin{aligned} \frac{B_{i-1}(x)}{B_{i}(x)}&= \frac{(c_+(x)^{n+2} - c_-(x)^{n+2})(c_+(x)^{n} - c_-(x)^{n})}{(c_+(x)^{n+1} - c_-(x)^{n+1})^2} \nonumber \\&= \frac{c_+(x)^{n+1} + c_-(x)^{n+1} - (c_-(x) c_+(x))^{n} (c_+^2 + c_-^2)}{(c_+(x)^{n+1} - c_-(x)^{n+1})^2} \nonumber \\&= 1 - \frac{(c_-(x) c_+(x))^{n} (c_+ - c_-)^2}{(c_+(x)^{n+1} - c_-(x)^{n+1})^2} \nonumber \\&= 1 - \frac{4 (4x)^n (1-4x)}{(c_+(x)^{n+1} - c_-(x)^{n+1})^2} < 1. \end{aligned}$$
(B.1)

Therefore, using that

$$\begin{aligned} \lim _{i \rightarrow \infty } B_i(x) = \frac{2}{c_+(x)}, \end{aligned}$$
(B.2)

we obtain that, for any \(i \in \mathbb {N}\) and \(x \in (0,1/4)\),

$$\begin{aligned} B_i(x) < \frac{2}{1 + \sqrt{1-4x}}. \end{aligned}$$
(B.3)

Now, consider the series

$$\begin{aligned} W_{n+1}(x,y) = \sum _{l \ge 1} y^l W_{n+1,l}(x). \end{aligned}$$
(B.4)

By Eq. (A.4), we have that the series is convergent if and only if

$$\begin{aligned} y B_{n}(x) < 1. \end{aligned}$$
(B.5)

Formula (B.3) together with Lemma 2 yield that the inequality (B.5) is satisfied for any \(n \in \mathbb {N}\) and if and only if \(x \in (0,1/4]\) and

$$\begin{aligned} \frac{2 y}{1 + \sqrt{1-4x}} <1, \end{aligned}$$
(B.6)

that is

$$\begin{aligned} y^2 - y + x < 0. \end{aligned}$$
(B.7)

This proves the corollary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napolitano, G.M., Turova, T.S. The Ising Model on the Random Planar Causal Triangulation: Bounds on the Critical Line and Magnetization Properties. J Stat Phys 162, 739–760 (2016). https://doi.org/10.1007/s10955-015-1430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1430-7

Keywords

Navigation