Skip to main content
Log in

Parallel Tempering Monte Carlo Simulations of Spherical Fixed-Connectivity Model for Polymerized Membranes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the first order phase transition of the fixed-connectivity triangulated surface model using the Parallel Tempering Monte Carlo (PTMC) technique on relatively large lattices. From the PTMC results, we find that the transition is considerably stronger than the reported ones predicted by the conventional Metropolis MC (MMC) technique and the flat histogram MC technique. We also confirm that the results of the PTMC on relatively smaller lattices are in good agreement with those known results. This implies that the PTMC is successfully used to simulate the first order phase transitions. The parallel computation in the PTMC is implemented by OpenMP, where the speed of the PTMC on multi-core CPUs is considerably faster than that on the single-core CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See documents for Intel Parallel Studio\(^{\textregistered }\), for example.

  2. The symbol D is used here for the spatial dimension instead of d to distinguish it from the dimension \(d(=\!3)\) of the external space \(\mathbf{R}^d\).

References

  1. Leibler, S.: Equilibrium statistical mechanics of fluctuating films and membranes. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces, 2nd edn, pp. 49–101. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  2. Gompper, G., Kroll, D.M.: Triangulated-surface models of fluctuating membranes. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces, 2nd edn, pp. 359–426. World Scientific, Singapore (2004)

    Chapter  Google Scholar 

  3. Bowick, M., Travesset, A.: The statistical mechanics of membranes. Phys. Rep. 344, 255 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wiese, K.: Polymerized membranes, a review. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 253–498. Academic Press, London (2000)

    Chapter  Google Scholar 

  5. Kantor, Y., Nelson, D.R.: Phase transitions in flexible polymeric surfaces. Phys. Rev. A 36, 4020–4032 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Peliti, L., Leibler, S.: Effects of thermal fluctuations on systems with small surface tension. Phys. Rev. Lett. 54, 1690–1693 (1985)

    Article  ADS  Google Scholar 

  7. David, F., Guitter, E.: Crumpling transition in elastic membranes: renormalization group treatment. Europhys. Lett 5, 709–714 (1988)

    Article  ADS  Google Scholar 

  8. Paczuski, M., Kardar, M., Nelson, D.R.: Landau theory of the crumpling transition. Phys. Rev. Lett. 60, 2638–2640 (1988)

    Article  ADS  Google Scholar 

  9. Borelli, M.E.S., Kleinert, H.: Schakel Adriaan, M.J.: Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature. Phys. Lett. A 267, 201–207 (2000)

    Article  ADS  Google Scholar 

  10. Kownacki, J.-P., Mouhanna, D.: Crumpling transition and flat phase of polymerized phantom membranes. Phys. Rev. E. 79, 040101(1–4) (2009)

  11. Essafi, K., Kownack, J.-P.i, Mouhanna, D.: First-order phase transitions in polymerized phantom membranes. Phys. Rev. E 89, 042101(1–5) (2014)

  12. Kownacki, J.-P., Diep, H.T.: First-order transition of tethered membranes in three-dimensional space. Phys. Rev. E 66, 066105(1–5) (2002)

  13. Koibuchi, H., Kuwahata, T.: First-order phase transition in the tethered surface model on a sphere. Phys. Rev. E 72, 026124(1–6) (2005)

  14. Koibuchi, H.: Flat histogram Monte Carlo simulations of triangulated fixed-connectivity surface models. J. Stat. Phys. 140, 676–687 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)

  16. Polyakov, A.M.: Fine structure of strings. Nucl. Phys. B 268, 406–412 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kleinert, H.: The membrane properties of condensing strings. Phys. Lett. B 174, 335–339 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Koibuchi, H., Shobukhov, A.: Monte Carlo simulations of Landau-Ginzburg model for membranes. Int. J. Mod. Phys. C. 25, 1450033(1–18) (2014)

  19. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  ADS  Google Scholar 

  20. Landau, D.P.: Finite-size behavior of the Ising square lattice. Phys. Rev. B 13, 2997–3011 (1976)

    Article  ADS  Google Scholar 

  21. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996)

    Article  ADS  Google Scholar 

  22. Takayama, H., Hukushima, K.: Computational experiment on glassy dynamic nature of field-cooled magnetization in ising spin-glass model. J. Phys. Soc. Jpn. 76, 013702(1–4) (2007)

  23. Neuhaus, T., Magiera, M.P., Hansmann, U.H.E.: Efficient parallel tempering for first-order phase transitions. Phys. Rev. E 76, 045701(R)(1–4) (2007)

  24. Fiore Carlos, E.: First-order phase transitions: a study through the parallel tempering method. Phys. Rev. E 78, 041109(1–5) (2008)

  25. Ambjørn, J., Irbäck, A., Jurkiewicz, J., Petersson, B.: The theory of dynamical random surfaces with extrinsic curvature. Nucl. Phys. B 393, 571–600 (1993)

  26. Wheater, J.F.: Random surfaces: from polymer membranes to strings. J. Phys. A Math. Gen. 27, 3323–3353 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Karlin, S., Taylor, H.: A First Course in Stochastic Processes, 2nd edn. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  28. Ueda, A.: Computer Simulations: Atomistic Motion in Macroscopic Systems. Asakura Shoten, Tokyo (1990). (in Japanese)

    Google Scholar 

  29. Binder, K., Landau, D.P.: Finite-size scaling at first-order phase transitions. Phys. Rev. B 30, 1477–1485 (1984)

    Article  ADS  Google Scholar 

  30. Challa, M.S.S., Landau, D.P., Binder, K.: Finite-size effects at temperature-driven first-order transitions. Phys. Rev. B 34, 1841–1852 (1986)

  31. Landau, D.P.: Monte Carlo studies of finite size effects at first and second order phase transitions. In: Privman, V. (ed.) Finite Size Scaling and Numerical Simulation of Statistical Systems, pp. 225–260. World Scientific, Singapore (1990)

    Google Scholar 

  32. Binder, K.: Finite size scaling analysis of ising model block distribution functions. Z. Phys. B 43, 119–140 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Hideo Sekino for the support of the Promotion of Joint Research 2014, Toyohashi University of Technology. This work is supported in part by the Grant-in-Aid for Scientific Research (C) Number 26390138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usui, S., Koibuchi, H. Parallel Tempering Monte Carlo Simulations of Spherical Fixed-Connectivity Model for Polymerized Membranes. J Stat Phys 162, 701–711 (2016). https://doi.org/10.1007/s10955-015-1428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1428-1

Keywords

Navigation