Skip to main content
Log in

Limiting Results for the Free Energy of Directed Polymers in Random Environment with Unbounded Jumps

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free energy including the negative infinity value of the coupling constant \(\beta \). Our proof of existence at \(\beta =-\infty \) differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at \(\beta =-\infty \) in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  3. Carmona, P., Hu, Y.: On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Relat. Fields 124(3), 431–457 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carmona, R., Koralov, L., Molchanov, S.: Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stoch. Equ. 9(1), 77–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc. 108(518), viii+125 (1994)

    MathSciNet  Google Scholar 

  6. Comets, F., Cranston, M.: Overlaps and pathwise localization in the Anderson polymer model. Stoch. Process. Appl. 123(6), 2446–2471 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Comets, F., Popov, S., Vachkovskaia, M.: The number of open paths in an oriented \(\rho \)-percolation model. J. Stat. Phys. 131(2), 357–379 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in a random environment: path localization and strong disorder. Bernoulli 9(4), 705–723 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Comets, F., Yoshida, N.: Brownian directed polymers in random environment. Commun. Math. Phys. 254(2), 257–287 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Comets, F., Yoshida, N.: Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34(5), 1746–1770 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Comets, F., Yoshida, N.: Localization transition for polymers in Poissonian medium. Commun. Math. Phys. 323(1), 417–447 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Cox, J.T.: The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12(4), 864–879 (1980)

    Article  MATH  Google Scholar 

  13. Cox, J.T., Kesten, H.: On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18(4), 809–819 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cranston, M., Mountford, T.S.: Lyapunov exponent for the parabolic Anderson model in \({ R}^d\). J. Funct. Anal. 236(1), 78–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cranston, M., Mountford, T.S., Shiga, T.: Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71(2), 163–188 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Cranston, M., Mountford, T.S., Shiga, T.: Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab. Theory Relat. Fields 132(3), 321–355 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Darling, R.W.R.: The Lyapunov exponent for products of infinite-dimensional random matrices. In: Lyapunov exponents (Oberwolfach, 1990). Lecture Notes in Mathematics, vol. 1486, pp. 206–215. Springer, Berlin (1991)

  18. Fukushima, R., Yoshida, N.: On exponential growth for a certain class of linear systems. ALEA Lat Am. J. Probab. Math. Stat. 9(2), 323–336 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Garet, O., Gouéré, J.B., Marchand, R.: The number of open paths in oriented percolation (2015, preprint). arXiv:1312.2571

  20. Griffeath, D.: The binary contact path process. Ann. Probab. 11(3), 692–705 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Howard, C.D., Newman, C.M.: Euclidean models of first-passage percolation. Probab. Theory Relat. Fields 108(2), 153–170 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577–623 (2001)

    MATH  MathSciNet  Google Scholar 

  23. Kasahara, Y.: Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18(2), 209–219 (1978)

    MATH  MathSciNet  Google Scholar 

  24. Kesten, H.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 125–264. Springer, Berlin (1986)

  25. Kesten, H., Sidoravicius, V.: A problem in last-passage percolation. Braz. J. Probab. Stat. 24(2), 300–320 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lacoin, H.: Existence of an intermediate phase for oriented percolation. Electron. J. Probab. 17(41), 17 (2012)

    MathSciNet  Google Scholar 

  27. Moriarty, J., O’Connell, N.: On the free energy of a directed polymer in a Brownian environment. Markov Process Relat Fields 13(2), 251–266 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Mountford, T.S.: A note on limiting behaviour of disastrous environment exponents. Electron. J. Probab. 6(1), 9 (2001). (electronic)

    MathSciNet  Google Scholar 

  29. Nagaev, S.V.: Large deviations of sums of independent random variables. Ann. Probab. 7(5), 745–789 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19–73 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shiga, T.: Exponential decay rate of survival probability in a disastrous random environment. Probab. Theory Relat. Fields 108(3), 417–439 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yoshida, N.: Phase transitions for the growth rate of linear stochastic evolutions. J. Stat. Phys. 133(6), 1033–1058 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by CNRS, UMR 7599. The second author was supported by JSPS KAKENHI Grant Number 24740055. The fourth author was supported by JSPS KAKENHI Grant Number 25400136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoki Fukushima.

Appendix

Appendix

We provide a proof of (3) for completeness. We consider \(d=1\) case first since the other case will reduce to it. Set

$$\begin{aligned} {\mathscr {L}}=\{(m,x)\in \mathbb {N}\times \mathbb {Z}: m+x\in 2\mathbb {Z}\}. \end{aligned}$$

For \(R>0\) and \((m,x)\in {\mathscr {L}}\), we say (mx) is open if there exists a \(y_m\in Rx+(-R,R)\cap \mathbb {Z}\) such that \(\eta (m,y_m)=0\). It is easy to see that

$$\begin{aligned} Q((m,x)\text { is open}) \rightarrow 1 \end{aligned}$$

as \(R\rightarrow \infty \). Thus when R is large, the directed site percolation on \({\mathscr {L}}\) is supercritical and we can find a percolation point \((1,x)\in {\mathscr {L}}\). This implies that there exists a path \(\{(k,y_k)\}_{k\ge 1}\) satisfying

$$\begin{aligned} \eta (k,y_k)=0\text { and }|y_{k+1}-y_{k+2}|\le 3R \end{aligned}$$

for all \(k\ge 1\). Then it follows that

$$\begin{aligned} \begin{aligned} \liminf _{n\rightarrow \infty }\frac{1}{n}\log Z_n^{\eta ,-\infty }&\ge \liminf _{n\rightarrow \infty }\frac{1}{n}\log P(X_k=y_k\text { for all } k\le n)\\&\ge -c_2 3^\alpha R^\alpha . \end{aligned} \end{aligned}$$

For the case \(d\ge 2\), we have

$$\begin{aligned} Z_n^{\eta ,-\infty }\ge P(H_n^\eta =0 \text { and } X_k \in \mathbb {Z}\times \{0\}^{d-1}\text { for all }1\le k\le n) \end{aligned}$$

and the right-hand side can be bounded from below in the same way as for \(d=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comets, F., Fukushima, R., Nakajima, S. et al. Limiting Results for the Free Energy of Directed Polymers in Random Environment with Unbounded Jumps. J Stat Phys 161, 577–597 (2015). https://doi.org/10.1007/s10955-015-1347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1347-1

Keywords

Mathematics Subject Classification

Navigation