Skip to main content
Log in

Spectral Analysis for a Discrete Metastable System Driven by Lévy Flights

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider a finite state time discrete Markov chain that mimic the behaviour of solutions of the stochastic differential equation

$$\begin{aligned} X_{t}^{\varepsilon }(x)=x-\int _0^t U^{\prime }(X_{s}^{\varepsilon })\, \mathrm {d}s+\varepsilon L_{t}, \end{aligned}$$

where U is a multi-well potential with \(n\ge 2\) local minima and \(L=(L_t)_{t\ge 0}\) is a symmetric \(\alpha \)-stable Lévy process (Lévy flights process). We investigate the spectrum of the generator of this Markov chain in the limit \(\varepsilon \rightarrow 0\) and localize the top n eigenvalues \(\lambda ^\varepsilon _1,\ldots ,\lambda ^\varepsilon _n\). These eigenvalues turn out to be of the same algebraic order \(\mathcal O(\varepsilon ^\alpha )\) and are well separated from the rest of the spectrum by a spectral gap. We also determine the limits \(\lim _{\varepsilon \rightarrow 0}\varepsilon ^{-\alpha } \lambda ^\varepsilon _i\), \(1\le i\le n\), and show that the corresponding eigenvectors are approximately constant over the domains which correspond to the potential wells of U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 116, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A 14, 453–457 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  3. Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. Fields 19(3), 459–490 (2013)

    MathSciNet  Google Scholar 

  4. Berglund, N., Gentz, B.: The Eyring–Kramers law for potentials with nonquadratic saddles. Markov Process. Relat. Fields 16(3), 549–598 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bergström, H.: On some expansions of stable distribution functions. Ark. Mat. 2(4), 375–378 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6(4), 399–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. 7(1), 69–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burghoff, T.: Spectral properties of a discrete Lévy-driven metastable system. Ph.D. thesis, Friedrich Schiller University Jena, Jena (2014)

  10. Buslov, V.A., Makarov, K.A.: Hierarchy of time scales in the case of weak diffusion. Theor. Math. Phys. 76(2), 818–826 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buslov, V.A., Makarov, K.A.: Life times and lower eigenvalues of an operator of small diffusion. Mat. Zametki 51(1), 20–31 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Byl, K., Tedrake, R.: Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)

    Article  Google Scholar 

  13. Cameron, M.K.: Computing Freidlin’s cycles for the overdamped Langevin dynamics. Application to the Lennard–Jones-\(38\) cluster. J. Stat. Phys. 152(3), 493–518 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Cerrai, S.: Second Order PDE’s in Finite and Infinite Dimension. A Probabilistic Approach. Lecture Notes in mathematics, vol. 1762. Springer, Berlin (2001)

    Book  Google Scholar 

  15. Chechkin, A.V., Gonchar, V.Y., Klafter, J., Metzler, R., Tanatarov, L.V.: Lévy flights in a steep potential well. J. Stat. Phys. 115(5–6), 1505–1535 (2004)

    Article  ADS  MATH  Google Scholar 

  16. Chiang, T.S., Hwang, C.R., Sheu, S.J.: Diffusion for global optimization in \(\mathbb{R}^n\). SIAM J. Control Optim. 25(3), 737–753 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ditlevsen, P.D.: Observation of \(\alpha \)-stable noise induced millennial climate changes from an ice record. Geophys. Res. Lett. 26(10), 1441–1444 (1999)

    Article  ADS  Google Scholar 

  18. Dubkov, A., Spagnolo, B.: Langevin approach to Lévy flights in fixed potentials: exact results for stationary probability distributions. Acta Phys. Pol. B 38(5), 1745–1758 (2007)

    MathSciNet  ADS  Google Scholar 

  19. Dybiec, B., Sokolov, I.M., Chechkin, A.V.: Stationary states in single-well potentials under symmetric Lévy noises. J. Stat. Mech. 2010, P07008 (2010)

    Google Scholar 

  20. Eckhoff, M.: Capacity and low lying spectra of attractive Markov chains. Ph.D. thesis, University of Potsdam (2000)

  21. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, vol. 260, 2nd edn. Springer, New York (1998)

    Book  Google Scholar 

  22. Friedman, A.: The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives. Indiana Univ. Math. J. 22(10), 1005–1015 (1973)

    Article  MATH  Google Scholar 

  23. Galves, A., Olivieri, E., Vares, M.E.: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15(4), 1288–1305 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herrmann, S., Imkeller, P., Pavlyukevich, I., Peithmann, D.: Stochastic Resonance: A Mathematical Approach in the Small Noise Limit, AMS Mathematical Surveys and Monographs, vol. 194. American Mathematical Society, Providence (2014)

    Google Scholar 

  25. Holley, R., Kusuoka, S., Stroock, D.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hwang, C.R., Sheu, S.J.: Large-time behavior of perturbed diffusion Markov processes with applications to the second eigenvalue problem for Fokker-Planck operators and simulated annealing. Acta Appl. Math. 19(3), 253–295 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Imkeller, P., Pavlyukevich, I.: Metastable behaviour of small noise Lévy-driven diffusions. ESAIM: Prob. Stat. 12, 412–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khasminskii, R.Z.: On positive solutions of the equation \(\mathfrak{A}u+Vu=0\). Theory Probab. Appl. 4(3), 309–318 (1959)

    Article  Google Scholar 

  29. Kipnis, C., Newman, C.M.: The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45(6), 972–982 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kolokoltsov, V.N.: Semiclassical Analysis for Diffusions and Stochastic Processes. Lecture Notes in Mathematics, vol. 1724. Springer, Berlin (2000)

    Google Scholar 

  31. Kolokol’tsov, V.N., Makarov, K.A.: Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process. Rus. J. Math. Phys. 4(3), 341–360 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Kulik, A.M.: Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Process. Appl. 119(2), 602–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Makarov, K.A.: Division of the spectrum of an elliptic operator associated with “small diffusion”. Vestnik Leningrad University. Mathematics 18(1), 27–36 (1985)

    MATH  Google Scholar 

  35. Matkowsky, B.J., Schuss, Z.: Eigenvalues of the Fokker–Planck operator and the approach to equilibrium for diffusions in potential fields. SIAM J. Appl. Math. 40, 242–254 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Metzler, R., Chechkin, A.V., Klafter, J.: Lévy statistics and anomalous transport: Lévy flights and subdiffusion. In: Meyers, M.A. (ed.) Computational Complexity. Theory, Techniques, and Applications, pp. 1724–1745. Springer, Berlin (2012)

    Google Scholar 

  37. Nicolis, C.: Stochastic aspects of climatic transitions—responses to periodic forcing. Tellus 34, 1–9 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  38. Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  39. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs. Clarendon Press, Oxford (2002)

    Google Scholar 

  40. Samorodnitsky, G., Grigoriu, M.: Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Lévy motions. Stoch. Process. Appl. 105(1), 69–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schuss, Z.: Theory and applications of stochastic processes. An analytical approach. In: Applied Mathematical Sciences, vol. 170. Springer, New York (2010)

  42. Schuss, Z., Matkowsky, B.J.: The exit problem: a new approach to diffusion across potential barriers. SIAM J. Appl. Math. 36(3), 604–623 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schütte, C., Sarich, M.: Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Courant Lecture Notes, vol. 24. American Mathematical Society, Providence (2013)

    Google Scholar 

  44. Tu, P.N.V.: Dynamical Systems: An Introduction with Applications in Economics and Biology. Springer-Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  45. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Pavlyukevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burghoff, T., Pavlyukevich, I. Spectral Analysis for a Discrete Metastable System Driven by Lévy Flights. J Stat Phys 161, 171–196 (2015). https://doi.org/10.1007/s10955-015-1313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1313-y

Keywords

Navigation