Skip to main content
Log in

A Formal View on Level 2.5 Large Deviations and Fluctuation Relations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We obtain the rate function for the level 2.5 of large deviations for pure jump and diffusion processes. This result is proved by two methods: tilting, for which a tilted process with an appropriate typical behavior is considered, and a spectral method, for which the scaled cumulant generating function is used. We also briefly discuss fluctuation relations, pointing out their connection with large deviations at the level 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The expression \(\rho _{inv}\circ L\circ \rho _{inv}^{-1}\) must be understood as the composition of three operators, first the operator multiplication by \(\rho _{inv}^{-1},\) second the operator \(L\) and last the operator multiplication by \(\rho _{inv}\). This type of notation is recurrently used in the article.

  2. In operational notation \(L_{V_{1},V_{2}}=W\exp \left( V_{2}\right) -W\left[ 1\right] +V_{1}\).

  3. Rigorously, we should instead define the empirical measure \(\mu _{T}^{e}=\frac{1}{T}\int _{0}^{T}\delta _{X_{t}}dt\).

  4. $$\begin{aligned} \int _{\mathcal {E}}dxg(x)\nabla \cdot j_{T}^{e}(x)= & {} -\int _{\mathcal {E}}dxj_{T}^{e}(x) \cdot \nabla g(x)=-\frac{1}{T}\int _{0\text { }}^{T}\nabla g(X_{t})\circ dX_{t}\\= & {} \frac{1}{T}\left( g(X_{0})-g(Xt)\right) ,\qquad \text {for all functions g}. \end{aligned}$$
  5. Here, we do not consider the case where the time inversion acts non-trivially on the space \(\mathcal {E}\). For example, such a situation takes place for the non-over-damped Kramers equation [10].

  6. A better upper bound has been obtained in [11] using the classical Martingale inequality.

  7. \(X_{t}\) does not need to be Markovian here.

  8. For a theoretical Physicist point of view, this theorem is a functional Laplace transform followed by a saddle point approximation.

  9. These properties follow from the Krein–Rutman theorem [35], which, however, requires that the operator \(L_{V_{1},V_{2}}\) is compact. For a uniformly elliptic operator in divergent form as the generator of a diffusion process, a version of the Krein–Rutman theorem is proven, for example, in [27], Chap. 6.5.2], where the hypothesis are: \(\mathcal {E}\) is bounded, open and connected; \(\partial \mathcal {E}\) is smooth; \(D\) and \(\widehat{A_{0}}\) are smooth; \(L_{V_{1},V_{2}}\left[ 1\right] \ge 0\) on \(\mathcal {E}\). Strictly speaking, the theorem is not valid if, for example, \(\mathcal {E}\) is not bounded, with the extension for an unbounded \(\mathcal {E}\) being a difficult and contemporary problem [4]. Even though we are not aware of proof for unbounded \(\mathcal {E}\) in the mathematics literature, more sophisticated related results do exist, as for example in [43], Chap. 4.11]. From a physicist perspective, if the drift of the process is sufficiently confining then the result for bounded \(\mathcal {E}\) case should also be true for unbounded \(\mathcal {E}\).

References

  1. Barato, A.C., Chetrite, R., Hinrichsen, H., Mukamel, D.: Entropy production and fluctuation relations for a KPZ interface. J. Stat. Mech.: Theor. Exp. P10008 (2010)

  2. Barato, A.C., Chetrite, R., Hinrichsen, H., Mukamel, D.: A Gallavotti–Cohen–Evans–Morriss like symmetry for a class of Markov jump processes. J. Stat. Phys. 146, 294 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Barato, A.C., Chetrite, R.: On the symmetry of current probability distributions in jump processes. J. Phys. A: Math. Theor. 45, 485002 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. Berestycki, H., Rossi, L.: Generalization and properties of the principal eigeinvalue of elliptic operators in unbounded domains. Commun. Pure Appl. Math. 68, 1014 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bertini, L., Gabrielli, D., Faggionnato, A.: Large deviations of the empirical flow for continuous time Markov chains. arXiv:1210.2004 (2012)

  6. Bertini, L., Faggionato, A., Gabrielli, D.: From level 2.5 to level 2 large deviations for continuous time Markov chains. Markov Process. Relat. Fields 20, 545 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bertini, L., Chetrite, R., Faggionato, A., Gabrielli, D.: Large deviation of the empirical flow for Markov chain with time-periodic rates (in preparation)

  8. Boltzmann, L.: Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respecktive den Sätzen über das Wärmegleichgewicht. Sitzungsberichte der Akademie der Wissenschaften, Wien, II 75, 67 (1877)

    Google Scholar 

  9. Chernyak, V., Chertkov, M., Malinin, S., Teodorescu, R.: Non-equilibrium thermodynamics and topology of currents. J. Stat. Phys. 137, 109–147 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Chetrite, R., Gupta, S.: Two refreshing views of fluctuation theorems through kinematics elements and exponential martingale. J. Stat. Phys. 143, 543–584 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Chetrite, R., Faggionato, A., Gabrielli, D.: Large deviation principle for the m-order empirical measure and flow of continuous time Markov chain (in preparation)

  13. Chung, K.L., Walsh, J.B.: Markov Processes, Brownian Motion, and Time Symmetry, 2nd edn. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  14. Crooks, G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  15. de la Fortelle, A.: Large deviation principle for Markov chains in continuous time. Prob. Inf. Transm. 37, 120 (2001)

    Article  MATH  Google Scholar 

  16. den Hollander, F.: Large Deviations. American Mathematical Society, Providence (2009)

    Google Scholar 

  17. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  18. Deuschel, J.D., Stroock, D.: Large Deviations. Academic Press, Boston (1989)

    Google Scholar 

  19. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectation for large time, I. Commun. Pure Appl. Math. 28, 1 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectation for large time, II. Commun. Pure Appl. Math. 28, 279 (1975)

    Article  Google Scholar 

  21. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectation for large time, III. Commun. Pure Appl. Math. 29, 389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectation for large time, IV. Commun. Pure Appl. Math. 36, 183 (1983)

    Article  MathSciNet  Google Scholar 

  23. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  24. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (2009)

    Google Scholar 

  25. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  MATH  Google Scholar 

  26. Evans, D.J., Searles, D.J.: Equilibrium microstates which generates the second law violating steady state. Phys. Rev. E 50, 1645 (1994)

    Article  ADS  Google Scholar 

  27. Evans, L.C.: Partial Differential Equation. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  28. Flandoli, F., Giaquinta, M., Gubinelli, M., Tortorelli, V.M.: Stochastic currents. Stoch. Process. Appl. 155, 1583 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gallavotti, G., Cohen, E.G.D.: Dynamical ensemble in a stationary state. J. Stat. Phys. 80, 931–970 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Hormander, L.: Hypoelliptic second ordrer differential equations. Acta Math. 119, 147 (1967)

    Article  MathSciNet  Google Scholar 

  31. Jarzynski, C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  32. Kesidis, G., Walrand, J.: Relative entropy between Markov transition rate matrices. IEEE Trans. Inf. Theory 39, 10561057 (1993)

    Article  MathSciNet  Google Scholar 

  33. Kirchkoff, G.: Über die Auflosung der Gleichungen, auf welche man bei der Untersuchungder der linearen Vertheilung galvanischer Strome gefuhrt wird. Ann. Phys. (Berlin) 148, 497 (1847)

    Article  ADS  Google Scholar 

  34. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  Google Scholar 

  35. Krein, M.G., Rutman, M.A.: Linear operators leaving a cone in a Banach space. Uspekhi Matematicheskikh Nauk 3, 3 (1948)

    MathSciNet  Google Scholar 

  36. Kusuoka, S., Kuwada, K., Tamura, Y.: Large deviation for stochastic line integrals as L\(^p\)-currents. Probab. Theory Relat. Fields 147, 649 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lebowitz, J., Spohn, H.: A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  39. Maes, C., Netocny, K., Wynants, B.: Steady state statistics of driven diffusions. Physica A 387, 2675 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. Maes, C., Netocny, K.: The canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. Europhys. Lett. 82, 30003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Malliavin, P.: Stochastic calculus of variations and hypoelliptic operators. In: Proc. Intern. Symp. SDE (Kyoto), Wiley, New York (1978)

  42. Oono, Y.: Large deviation and statistical physics. Prog. Theoret. Phys. Suppl. 99, 165 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  43. Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  44. Revuz, D., Yor, M.: Continuous Martingles and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  45. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, New York (1996)

    Book  Google Scholar 

  46. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  47. Seifert, U.: Stochastic thermodynamics, fluctuation theorems, and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  48. Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  49. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Varadhan, S.R.S.: Large Deviations and Applications. SIAM, Philadelphia (1984)

    Book  Google Scholar 

Download references

Acknowledgments

We thank Krzysztof Gawedzki for helping in the proof presented in Sect. 4.2.4 and Hugo Touchette for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre C. Barato.

Additional information

“I would like to offer some remarks about the word “formal”. For the mathematician, it usually means “according to the standard of formal rigor, of formal logic”. For the physicists, it is more or less synonymous with “heuristic” as opposed to “rigorous””. Pierre Cartier. Mathemagics (A Tribute to L. Euler and R. Feynman). Seminaire Lotharingien de Combinatoire 44 (2000), Article B44d.

Appendices

Appendix 1: Proof of (82)

We prove relation (82) from relation (81). Writing

$$\begin{aligned} \left( L_{0,V_{2}}+V_{1}\right) r\left[ V_{1},V_{2}\right] (x)=\lambda \left[ V_{1},V_{2}\right] r\left[ V_{1},V_{2}\right] (x), \end{aligned}$$
(90)

we obtain

$$\begin{aligned} V_{1}-\lambda \left[ V_{1},V_{2}\right] =-\left( r\left[ V_{1},V_{2}\right] (x)\right) ^{-1}L_{0,V_{2}}\left( r\left[ V_{1},V_{2}\right] \right) (x). \end{aligned}$$
(91)

With this last equation (81) becomes

$$\begin{aligned} I\left[ \rho ,j\right]= & {} \sup _{V_{1},V_{2}}\left( \int _{\mathcal {E}}dx\rho (x)\left( V_{1}(x)-\lambda \left[ V_{1},V_{2}\right] \right) +j(x) \cdot V_{2}(x)\right) \nonumber \\= & {} \sup _{V_{1},V_{2}}\left( \int _{\mathcal {E}}dx\rho (x)\left( -\left( r\left[ V_{1},V_{2}\right] (x)\right) ^{-1}L_{0,V_{2}}\left( r\left[ V_{1},V_{2}\right] \right) (x)\right) +j(x) \cdot V_{2}(x)\right) \nonumber \\= & {} \sup _{V'_{1},V_{2}}\left( \int _{\mathcal {E}}dx\rho (x)\left( -\exp \left( -V'_{1}(x)\right) L_{0,V_{2}}\left[ \exp \left( V'_{1}\right) \right] (x)\right) +j(x) \cdot V_{2}(x)\right) ,\nonumber \\ \end{aligned}$$
(92)

where \(V_1'= \ln r(V_1,V_2)\).

Appendix 2: Proof of (83)

The goal here is to prove relation (83) from (82). From a direct calculation we obtain

$$\begin{aligned} \exp \left( -V'_{1}\right) L_{0,V_{2}}\left( \exp V'_{1}\right) =L_{0,V_{2}+\nabla V'_{1}}[1]. \end{aligned}$$
(93)

Relation (82) then becomes

$$\begin{aligned} I\left[ \rho ,j\right]&= \sup _{V'_{1},V_{2}}\left( \int _{\mathcal {E}}dx\left( j(x) \cdot V_{2}(x)-\rho (x)L_{0,V_{2}+\nabla V'_{1}}[1](x)\right) \right) \nonumber \\&= \sup _{V'_{1},V'_{2}}\left( \int _{\mathcal {E}}dx\left( -j(x) \cdot \nabla V'_{1}+j(x) \cdot V'_{2}(x)-\rho (x)L_{0,V'_{2}}[1](x)\right) \right) \nonumber \\&= -\inf _{V'_{1}}\left( \int _{\mathcal {E}}dxj(x) \cdot \nabla V'_{1}\right) +\sup _{V_{2}'}\left( \int _{\mathcal {E}}dx\left( j(x) \cdot V'_{2}(x)-\rho (x)L_{0,V'_{2}}[1](x)\right) \right) . \end{aligned}$$
(94)

We obtain the final relation (83) with \(L_{0,V'_{2}}[1] = \widehat{A_{0}} \cdot V'_{2}+V'_{2} \cdot \frac{D}{2} \cdot V'_{2}+\nabla \cdot \left( \frac{D}{2} \cdot V'_{2}\right) \) and the algebraic manipulation

$$\begin{aligned}&\int _{\mathcal {E}}dx\left( j(x) \cdot V'_{2}(x)-\rho (x)L_{0,V'_{2}}[1](x)\right) \nonumber \\&\quad =\int _{\mathcal {E}}dx\left( j(x) \cdot V'_{2}(x)-\rho (x)\left( \widehat{A_{0}} \cdot V'_{2}+V'_{2} \cdot \frac{D}{2} \cdot V'_{2}+\nabla \cdot \left( \frac{D}{2} \cdot V'_{2}\right) \right) \right) \nonumber \\&\quad = \int _{\mathcal {E}}dxj(x) \cdot V'_{2}(x)-\left[ \rho (x)V'_{2} \cdot \frac{D}{2} \cdot V'_{2}+V'_{2} \cdot \left( \widehat{A_{0}}\rho (x)-\frac{D}{2}\cdot \nabla \rho +j\right) \right] \nonumber \\&\quad = \int _{\mathcal {E}}dx\left[ -\rho (x)V'_{2} \cdot \frac{D}{2} \cdot V'_{2}+V'_{2} \cdot \left( j-J_{\rho }\right) \right] \nonumber \\&\quad = -\int _{\mathcal {E}}dx\left[ \left( V'_{2}-\left( \rho D\right) ^{-1}\left( j-J_{\rho }\right) \right) \frac{\rho D}{2}\left( V'_{2}-\left( \rho D\right) ^{-1}\left( j-J_{\rho }\right) \right) \right. \nonumber \\&\quad \quad \left. -\left( j-J_{\rho }\right) \frac{\left( \rho D\right) ^{-1}}{2}\left( j-J_{\rho }\right) \right] , \end{aligned}$$
(95)

which included formal integration by parts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barato, A.C., Chetrite, R. A Formal View on Level 2.5 Large Deviations and Fluctuation Relations. J Stat Phys 160, 1154–1172 (2015). https://doi.org/10.1007/s10955-015-1283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1283-0

Keywords

Navigation