Skip to main content
Log in

On Quantum Fokker–Planck Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The quantum Fokker–Planck equation (QFPE) is revisited. Provided that the molecule is the Maxwellian molecule, the quantum Landau–Fokker–Planck equation is divided into characteristic four terms. The characteristics of three terms among four terms are investigated on the basis of Grad’s method, whereas the characteristics of the remained term, which is attributed to the collisional term of the QFPE proposed by Kaniadakis–Quarati, when the distribution function of the colliding partner is under the equilibrium state, are numerically investigated. The numerical result indicates that the time evolution of the distribution function obtained using such a remained term is instable, when the equilibrium or nonequilibrium state is given as initial data of the distribution function. Such an instability of the distribution function can be described by analyzing the propagation of the plane harmonic wave in one dimensional velocity space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \(H_{ijk\ldots }^{(n)}\) is equivalent to \(H_{v_iv_jv_k\ldots }^{(n)}\).

References

  1. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  2. Jackson, B., Adams, C.S.: Damping and revivals of collective oscillations in a finite-temperature model of trapped Bose–Einstein condensation. Phys. Rev. A 63, 053606 (2011)

    Article  ADS  Google Scholar 

  3. Cerboneschi, E., Menchini, C., Arimondo, E.: Monte Carlo simulations of Bose–Einstein condensation of trapped atoms. Phys. Rev. A 62, 013606 (2000)

    Article  ADS  Google Scholar 

  4. Wade, A.C.J., Baillie, D., Blakie, P.B.: Direct simulation Monte Carlo method for cold atom dynamics: classical Boltzmann equation in the quantum collision regime. Phys. Rev. A 84, 023612 (2011)

    Article  ADS  Google Scholar 

  5. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Oxford Science, Oxford (1994)

    Google Scholar 

  6. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein–Bose and Fermi–Dirac gases. Phys. Rev. 43, 552–561 (1933)

    Article  ADS  Google Scholar 

  7. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nouri, A.: An existence result for a quantum BGK model. Math. Comput. Model. 47(3–4), 515–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  10. Yano, R.: Semi-classical expansion of the distribution function using modified Hermite polynomials for quantum gas. Physica A. 416, 231–241 (2014)

  11. Kaniadakis, G., Quarati, P.: Kinetic equation for classical particles obeying an exclusion principle. Phys. Rev. E 48, 4263–4270 (1993)

    Article  ADS  Google Scholar 

  12. Carrillo, J.A., Rosado, J., Salvarani, F.: 1D nonlinear Fokker–Planck equations for Fermions and Bosons. Appl. Math. Lett. 21, 148–154 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carrillo, J.A., Laurencot, P., Rosado, J.: Fermi–Dirac–Fokker–Planck equation: well posedness and long-time asymptotics. J. Differ. Equ. 247, 2209–2234 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Toscani, G.: Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles. Commun. Partial. Differ. Equ. 37(1), 77–87 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Villani, C.: On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Methods Model Appl. Sci. 8(6), 957–983 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials part I: existence uniqueness and smoothness. Comm. Partial Differ. Equ. 25(1–2), 179–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials part II: H-theorem and applications. Comm. Partila Differ. Equ. 25(1–2), 261–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yano, R., Suzuki, K., Kuroda, H.: Analytical and numerical study on the nonequilibrium relaxation by the simplified Fokker–Planck equation. Phys. Fluids 21, 047104 (2009)

    Article  ADS  Google Scholar 

  19. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  20. Ikenberry, E., Truesdell, C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory I. J. Ration. Mech. Anal. 5(1), 55 (1956)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Yano.

Appendix: Derivation of Terms \(\fancyscript{M}_1\), \(\fancyscript{M}_2\), \(\fancyscript{M}_3\) and \(\fancyscript{M}_4\)

Appendix: Derivation of Terms \(\fancyscript{M}_1\), \(\fancyscript{M}_2\), \(\fancyscript{M}_3\) and \(\fancyscript{M}_4\)

In this appendix, we derive four terms \(\fancyscript{M}_1\), \(\fancyscript{M}_2\), \(\fancyscript{M}_3\) and \(\fancyscript{M}_4\) from the quantum Landau–Fokker–Planck equation, when the molecule is the Maxwellian molecule. The \(ij\)-element of \(3 \times 3\) matrix \(A(g)\), namely, \(\left[ A\left( g\right) \right] _{ij}\), is rewritten using the peculiar velocity, when the molecule is the Maxwellian molecule, as

$$\begin{aligned} \left[ A\left( g\right) \right] _{ij}=\left( \varvec{C}-\varvec{C}_1\right) ^2\delta _{ij}-\left( C_i-C_{1,i}\right) \left( C_j-C_{1,j}\right) , \end{aligned}$$
(24)

where \(C_{1,i}=v_{1,i}-u_i\) is the peculiar velocity of the colliding partner.

Substituting \(\left[ A\left( g\right) \right] _{ij}\) in Eq. (24) into the gain term of the quantum Landau–Fokker–Planck equation for the Maxwellian molecule in Eq. (1) (\(G_{\text{ QFPE }}\)), we obtain

$$\begin{aligned} G_{\text{ QFPE }}&=\frac{F}{4}\frac{m}{\hat{h}^3} \nabla _{\varvec{v}} \cdot \nonumber \\&\quad \!\times \!\int _{\fancyscript{V}^3_1} \left[ \left( \varvec{C}\!-\!\varvec{C}_1\right) ^2\delta _{ij}\!-\!\left( C_i\!-\!C_{1,i}\right) \left( C_j\!-\!C_{1,j}\right) \right] f\left( \varvec{v_1}\right) \left( 1\!-\!\theta f\left( \varvec{v_1}\right) \right) \nabla _{\varvec{v}} f\left( \varvec{v}\right) d\varvec{v}_1\nonumber \\&=\frac{F}{2}\Biggl [\frac{1}{2}\fancyscript{A} \frac{\partial }{\partial v_j} \left( C^2\delta _{ij}-C_i C_j\right) \frac{\partial f\left( \varvec{v}\right) }{\partial v_i}+\frac{1}{2}\fancyscript{B}_{ij} \frac{\partial ^2 f\left( \varvec{v}\right) }{\partial v_i \partial v_j}+\fancyscript{B}\frac{\partial ^2 f\left( \varvec{v}\right) }{\partial v_i^2}\nonumber \\&\quad -\frac{1}{2} \frac{\partial }{\partial v_j} \left\{ \left( \delta _{ij}\!-\!1\right) \delta _{ik}\delta _{jl} \,+\, 2\delta _{ij}\left( 1\!-\!\delta _{ik}\right) \left( 1 - \delta _{il}\right) \right\} \left( \Gamma _k C_l \,+\, \Gamma _l C_k\right) \frac{\partial }{\partial v_i} f\left( \varvec{v}\right) \Biggr ],\nonumber \\ \end{aligned}$$
(25)

where \(\fancyscript{A}\), \(\fancyscript{B}_{ij}\), \(\fancyscript{B}\) and \(\Gamma _i\) are defined by Eqs. (36), respectively.

Substituting \(\left[ A\left( g\right) \right] _{ij}\) in Eq. (24) into the loss term of the quantum Landau–Fokker–Planck equation for the Maxwellian molecule in Eq. (1) (\(L_{\text{ QFPE }}\)), we obtain

$$\begin{aligned} L_{\text{ QFPE }}&=-\frac{F}{4} \frac{m}{\hat{h}^3} \nabla _{\varvec{v}} \cdot \nonumber \\&\,\,\, \times \int _{\fancyscript{V}^3_1} \left[ \left( \varvec{C}\!-\!\varvec{C}_1\right) ^2\delta _{ij}\!-\!\left( C_i\!-\!C_{1,i}\right) \left( C_j\!-\!C_{1,j}\right) \right] \! f\left( \varvec{v}\right) \left( 1\!-\!\theta f\left( \varvec{v}\right) \right) \nabla _{\varvec{v}_1} f\left( \varvec{v}_1\right) d\varvec{v}_1,\nonumber \\&=\frac{F}{2} \rho \frac{\partial C_i f\left( \varvec{v}\right) \left( 1-\theta f\left( \varvec{v}\right) \right) }{\partial v_i}. \end{aligned}$$
(26)

From Eqs. (25) and (26), we readily obtain Eqs. (26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yano, R. On Quantum Fokker–Planck Equation. J Stat Phys 158, 231–247 (2015). https://doi.org/10.1007/s10955-014-1123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1123-7

Keywords

Navigation