Skip to main content
Log in

Anti-sigmoidal Composition Dependence of Glass Transition Temperature and Excess Heat Capacity Across It in a Binary System of Globular Alcohols

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) revealed an anti-sigmoidal composition dependence of the glass transition temperature in a binary mixture of dicyclohexylmethanol [\((\hbox {C}_6\hbox {H}_{11})_2\hbox {CHOH}\), DCHM] and tricyclohexylmethanol [\((\hbox {C}_6\hbox {H}_{11})_3\hbox {COH}\), TCHM]. The equimolar mixture, of which state was suggested to be robust by the dependence, was subjected to adiabatic calorimetry. The glass transition occurred around 257 K with a significant enthalpy relaxation. The excess heat capacity beyond the weighted average of heat capacities of neat compounds changes its sign from positive to negative upon the glass transition on cooling. The negative excess implies a denser molecular packing than neat glasses. The excess enthalpy is graphically given relative to \(T=298.15\) K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Numerical data of excess heat capacities and integrated excess enthalpy are available on request to a corresponding author.

References

  1. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Parisi, G., Urbani, P., Zamponi, F.: Theory of Simple Glasses: Exact Solutions in Infinite Dimensions. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  5. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948)

    Article  CAS  Google Scholar 

  6. Angell, C.A., Sare, E.J.: Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970)

    Article  ADS  CAS  Google Scholar 

  7. Angell, C.A., Sare, J.M., Sare, E.J.: Glass transition temperatures for simple molecular liquids and their binary solutions. J. Phys. Chem. 82, 2622–2629 (1978)

    Article  CAS  Google Scholar 

  8. Angell, C.A., Sare, E.J., Donnella, J., MacFarlane, D.R.: Homogeneous nucleation and glass transition temperatures in solutions of Li salts in \({\rm D}_2{{\rm O}}\) and \({\rm H}_2{{\rm O}}\). Doubly unstable glass regions. J. Phys. Chem. 85, 1461–1466 (1981)

    Article  CAS  Google Scholar 

  9. Lin, A.A., Kwei, T.W., Reiser, A.: On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends. Macromolecules 22, 4112–4119 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Gordon, M., Taylor, J.: Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952)

    Article  CAS  Google Scholar 

  11. Couchman, P.R., Karasz, F.E.: A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117–119 (1978)

    Article  ADS  CAS  Google Scholar 

  12. Kwei, T.: The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. 22, 307–313 (1984)

    CAS  Google Scholar 

  13. Pinal, R.: Entropy of mixing and the glass transition of amorphous mixtures. Entropy 10, 207–223 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Grolier, J.P.E., Benson, G.C.: Thermodynamic properties of binary mixtures containing ketones. VIII. Heat capacities and volumes of some n-alkanone + n-alkane mixtures at 29815 K. Can. J. Chem. 62, 949–953 (1984)

    Article  CAS  Google Scholar 

  15. Wilhelm, E., Grolier, J.-P.: Heat capacities and related properties of liquid mixtures, solutions and vapours. In: Wilhelm, E., Letcher, T. (eds.) Heat Capacities: Liquids. The Royal Society of Chemistry, Cambridge (2010)

    Chapter  Google Scholar 

  16. Suzuki, Y., Yamamura, Y., Sumita, M., Yasuzuka, S., Saito, K.: Neat liquid consisting of hydrogen-bonded tetramers: dicyclohexylmethanol. J. Phys. Chem. B 113, 10077–10080 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Yamamura, Y., Suzuki, Y., Sumita, M., Saito, K.: Calorimetric study of glass transition in molecular liquids consisting of globular associates: dicyclorohexylmethanol and tricyclohexylmethanol. J. Phys. Chem. B 116, 3938–3943 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. Nagatomo, S., Nobuhira, M., Yamamura, Y., Sumita, M., Saito, K.: Identification of hydrogen-bonded oligomers in associating liquid by \(^1\)H-NMR: 1-phenyl-1-cyclohexanol. Bull. Chem. Soc. Jpn. 86, 569–576 (2013)

    Article  CAS  Google Scholar 

  19. Sgarabotto, P., Ugozzoli, F., Sorriso, S., Malarski, Z.: Structural investigation of highly hindered methanol derivatives. 1. The structure of \(\alpha\)-cyclohexylcyclohexanemethanol. Acta Crystallogr. Sect. C 44, 671–673 (1988)

    Article  ADS  Google Scholar 

  20. Sgarabotto, P., Ugozzoli, F., Sorriso, S., Malarski, Z.: Structural investigation of highly hindered methanol derivatives. 2. The structure of \(\alpha ,\alpha\)-dicyclohexylcyclohexanemethanol. Acta Crystallogr. Sect. C 44, 674–676 (1988)

    Article  ADS  Google Scholar 

  21. Yamamura, Y., Saitoh, H., Sumita, M., Saito, K.: One-dimensional correlation in the dipolar Ising crystal tricyclohexylmethanol: crystal structure revisited and heat capacity. J. Phys. Cond. Matter 19, 176219 (2007)

    Article  ADS  Google Scholar 

  22. Malarski, Z., Szostak, R., Sorriso, S.: Infra-red and Raman investigations on the multimeric structure of \(\alpha,\alpha\)-dicyclohexyl-cyclohexanemethanol. Lett. Nuovo Cimento 40, 261–264 (1984)

    Article  CAS  Google Scholar 

  23. Saito, K., Hishida, M., Koike, K., Nagatomo, S., Yamamura, Y.: X-ray study of molecular association in alcohols having bulky substituents. Chem. Phys. Lett. 673, 74–77 (2017)

    Article  ADS  CAS  Google Scholar 

  24. Yamamura, Y., Saito, K., Saitoh, H., Matsuyama, H., Kikuchi, K., Ikemoto, I.: Heat capacity measurements and phase transition of crystalline 4,4″-difluoro-p-terphenyl. J. Phys. Chem. Solids 56, 107–115 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Preston-Thomas, H.: The international temperature scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)

    Article  ADS  Google Scholar 

  26. Suga, H., Seki, S.: Thermodynamic investigation on glassy states of pure simple compounds. J. Non-Cryst. Solids 16, 171–194 (1974)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of the late Professor Jean-Pierre Grolier, a giant in the field of calorimetry and thermal analysis.

Author information

Authors and Affiliations

Authors

Contributions

YY and KS designed the project, KM mainly performed experiments, all authors participated in discussion, and KS prepared the main manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yasuhisa Yamamura or Kazuya Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamura, Y., Nomiya, K., Hishida, M. et al. Anti-sigmoidal Composition Dependence of Glass Transition Temperature and Excess Heat Capacity Across It in a Binary System of Globular Alcohols. J Solution Chem 53, 144–153 (2024). https://doi.org/10.1007/s10953-022-01242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01242-3

Keywords

Navigation