Skip to main content
Log in

Solubility Isotherm Determinations at T = (273.15, 298.15, 323.15, 348.15 and 363.15) K and Thermodynamic Modeling of the H3BO3 + SrCl2 + H2O System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Boron abundantly exists in salt lake brine system as various boron-containing aqueous species or minerals. The phase behavior of boron and other substances (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Cl, S etc.) in the complicated salt brine system during the solar pool process needs to be simulated and predicted by models. Basic experimental data (e.g. solubility, etc.) of simple binary and ternary system are necessary for the model parameterizations. At present, the unavailability of solubility data in the H3BO3 + SrCl2 + H2O ternary system makes the model parameterization difficult. In this paper, we determined the solubility isotherms in the H3BO3 + SrCl2 + H2O ternary system at 273.15 K, 298.15 K, 323.15 K, 348.15 K and 363.15 K. The result show that the isotherms all consisted of the solubility branches H3BO3(cr) and SrCl2nH2O(cr) (n = 6 and 2), and no new phase has been found. Then, a Pitzer–Simonson–Clegg (PSC) model in the ISLEC software package was used to simulate the thermodynamic properties of the H3BO3 + H2O, SrCl2 + H2O, and H3BO3 + SrCl2 + H2O systems, including solubility, water activity, activity coefficients, heat capacity and enthalpy of dilution. With the obtained model parameters, a complete polythermal phase diagram of the H3BO3 + SrCl2 + H2O system was predicted at temperatures from 255 to 373 K. The present work lays the foundation for the future simulations of complicated salt lake brine systems containing H3BO3 and SrCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, D.D., Zeng, D.W., Han, H.J., Guo, L.J., Yin, X., Yao, Y.: Phase diagrams and thermochemical modeling of salt lake brine systems. I. LiCl + H2O system. Calphad 51, 1–12 (2015)

    Google Scholar 

  2. Li, D.D., Zeng, D.W., Yin, X., Han, H.J., Guo, L.J., Yao, Y.: Phase diagrams and thermochemical modeling of salt lake brine systems. II. NaCl + H2O, KCl + H2O, MgCl2 + H2O and CaCl2 + H2O systems. Calphad 53, 78–89 (2016)

    CAS  Google Scholar 

  3. Gao, D.D., Li, D.D., Li, W.: Solubility of RbCl and CsCl in pure water at subzero temperatures, heat capacity of RbCl(aq) and CsCl(aq) at T = 298.15 K, and thermodynamic modeling of RbCl + H2O and CsCl + H2O systems. J. Chem. Thermodyn. 104, 201−211 (2017)

  4. Li, D.D., Zeng, D.W., Yin, X., Gao, D.D.: Phase diagrams and thermochemical modeling of salt lake brine systems. III. Li2SO4 + H2O, Na2SO4 + H2O, K2SO4 + H2O, MgSO4 + H2O and CaSO4 + H2O systems. Calphad 60, 163–176 (2018)

    CAS  Google Scholar 

  5. Fan, Y.F., Li, D.D., Gao, D.D., Zeng, D.W., Li, W.: Heat capacity of Rb2SO4(aq) and Cs2SO4(aq) solutions and thermodynamic modelling of (Rb2SO4 + H2O) and (Cs2SO4 + H2O) systems. J. Chem. Thermodyn. 142, 106001 (2020)

    CAS  Google Scholar 

  6. Ingri, N.: Equilibrium studies of polyanions. 8. On the first equilibrium steps in the hydrolysis of boric acid, a comparison between equilibrium in 0.1 M and 3.0 M NaClO4. Acta Chem. Scand. 16, 439–448 (1962)

    CAS  Google Scholar 

  7. Ingri, N.: Equilibrium studies of polyanions. 10. On the first equilibrium steps in the acidification of B(OH)4−, an application of the self-medium method. Acta Chem. Scand. 17, 581–589 (1963)

    CAS  Google Scholar 

  8. Mesmer, R.E., Baes, C.F., Jr., Sweeton, F.H.: Acidity measurements at elevated temperatures VI. boric acid equilibria. Inorg. Chem. 11, 537–543 (1972)

    CAS  Google Scholar 

  9. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986)

    CAS  Google Scholar 

  10. Ye, L.Y., Li, D.D., Dong, Y.P., Xu, B.M., Zeng, D.W.: Measurement of specific heat capacity of NaBO2(aq) solution and thermodynamic modeling of NaBO2 + H2O, NaBO2 + NaCl + H2O, and NaBO2 + Na2SO4 + H2O systems. J. Chem. Eng. Data 65, 2548–2557 (2020)

    CAS  Google Scholar 

  11. Thomsen, K.: Thermodynamic modeling of the solubility of alkali and earth alkali borates. In: 15th International Symposium on Solubility Phenomena and Related Equilibrium Processes. Xining, China (2012)

  12. Wang, P.M., Kosinski, J.J., Lencka, M.M., Anderko, A., Springer, R.D.: Thermodynamic modeling of boric acid and selected metal borate systems. Pure Appl. Chem. 85, 2117–2144 (2013)

    CAS  Google Scholar 

  13. Bogdan, P.: L’ influence des substances etrangéres sur la solubilité de la phenylthiourée et de l’acide borique dans l’équ. Ann. Sci. Univ. Jassy. 2, 31–47 (1903)

    Google Scholar 

  14. Linderstrom-Lang, K.: Solubility of boracic acid. Compt. Rend. Trav. Lab. Carlsberg. 15, 20–23 (1924)

    Google Scholar 

  15. Kolthoff, I.M.: Die komplexzerfallskonstanten der verbindungen der borsäure mit salzen einiger organischer oxysäuren. Rec. Trav. Chim. Pays-Bas. 45, 607–619 (1926)

    CAS  Google Scholar 

  16. Teeple, J.E.: The Industrial Development of Searles Lake Brines with Equilibrium Data. The Chemical Catalog Company, New York (1929)

    Google Scholar 

  17. Palkin, A.P., Goloshchapov, M.V.: Mutual solubility in the systems sodium sulfate−boric acid−water and sodium chloride−boric acid−water. Trudy Voronezh. Gosudarst. Univ. Khim. Otdelenie. 11, 7–23 (1939)

    CAS  Google Scholar 

  18. Chanson, M., Millero, F.J.: The solubility of boric acid in electrolyte solutions. J. Solution Chem. 35, 689–703 (2006)

    CAS  Google Scholar 

  19. Di Giacomo, G., Brandani, P., Brandani, V., Del Rea, G.: Solubility of boric acid in aqueous solutions of chloride salts. Desalination 89, 185–202 (1993)

    Google Scholar 

  20. Gruvitsky, V.E., Schmidt, N.E.: Solubility of tenary H3BO3 + MgCl2 + H2O system and H3BO3 + CaCl2 + H2O system. In: Pelsha, A.D. (ed.) Handbook of Experimental Data for Solubility of Multicomponent Water–Salt System, Four−Component and More Complex Systems, vol. 2. Khimia, Leningrad (1975)

  21. Gao, Z.L., Gao, H.D., Wu, B.L., Niu, Y.Z., Yin, J.Z.: Solubility isotherms for the quaternary system H3BO3−MgSO4−MgCl2−H2O at 273.15 ± 0.05 K. Chem. J. Chinese Univ. 8, 585–588 (1987)

    CAS  Google Scholar 

  22. Chen, H.C., Yin, J.Z.: Solubility isotherm of H3BO3−MgCl2−MgSO4−H2O quaternary system at 28815 K. Chem. J. Chin. Univ. 8, 5–9 (1987)

    Google Scholar 

  23. Bagirov, G., Sedelnikov, G.S., Rza-zade, P.F.: Solubility isotherms of the systems MgCl2−Mg(OH)2–H2O and MgCl2−H3BO3−H2O at 25 °C. Azerb. Khim. Zh. 4, 105–109 (1965)

    Google Scholar 

  24. Gode, G.K.: Clarification of data on solution system MgCl2−H3BO3−H2O at 25 °C. Zh. Neorg. Khim. 4, 1115–1116 (1969)

    Google Scholar 

  25. Meng, L.Z., Ming, J.J., Yang, C., Yang, L., Li, D.: Stable phase equilibrium of the aqueous ternary system H3BO3−MgCl2−H2O at 308.15 K and 323.15 K. Guangdong Trace Elem. Sci. 19, 46–51 (2012)

    CAS  Google Scholar 

  26. Gode, G.K., Klavinya, L.A.: Solubility of LiCl−H3BO3−H2O system at 25 °C. Zh. Neorg. Khim. 12, 3390–3391 (1971)

    Google Scholar 

  27. Zul’fugarly, D.I., Dolinina, R.M., Azizulla, A., Arustamov, L.G.: Study of the interactions of aqueous solutions of lithium chloride with boric acid (H3BO3) at 25 °C. Azerb. Khim. Zh. 1, 134–136 (1980)

    Google Scholar 

  28. Skvortsov, V.G., Molodkin, A.K., Tsekhanskaya, N.R.: Effect of alkali metal halides on the solubility of orthoboric acid. Zh. Neorg. Khim. 26, 2240–2242 (1981)

    CAS  Google Scholar 

  29. Gode, G.K., Klavinya, L.A.: Solubility of RbCl−H3BO3−H2O at 25 °C. Zh. Neorg. Khim. 17, 2851 (1972)

    CAS  Google Scholar 

  30. Vogel, A.I.: Vogel's Textbook of Quantitative Chemical Analysis, 5th edn., Chap. 10. Wiley, New York (1989)

  31. Hudswell, F.: Third main group, 3a boron. In: Wilson, C.L., Wilson, D.W. (ed.) Comprehensive Analytical Chemistry: Classical Analysis, vol. 1C, Gravimetric and Titrimetric Determination of the Elements, Chap. 9. Elsevier Publishing Company, Amsterdam (1962)

  32. Blasdale, W.C., Slansky, C.M.: The solubility curves of boric acid and the borates of sodium. J. Am. Chem. Soc. 61, 917–920 (1939)

    CAS  Google Scholar 

  33. Nasini, R., Ageno, I.: Solubilità e idrati dell’ acido borico. Z. Phys. Chem. 69, 482–485 (1909)

    Google Scholar 

  34. Nies, N.P., Hulbert, R.W.: Solubility isotherms in the system sodium oxide–boric oxide–water. Revised solubility-temperature curves of boric acid, borax, sodium pentaborate, and sodium metaborate. J. Chem. Eng. Data 12, 303–313 (1967)

    CAS  Google Scholar 

  35. Benrath, A.: Über die löslichkeit von salzen und salzgemischen bei temperaturen oberhalb von 100 °C IV. Z. Anorg. Allg. Chem. 249, 245–250 (1942)

    CAS  Google Scholar 

  36. Menzel, H.: Zur kenntnis der borsäuren und borsauren alkalisalze. I. die freien borsäuren. Z. Anorg. Allg. Chem. 164, 1–21 (1927)

    CAS  Google Scholar 

  37. McCulloch, L.: A crystalline boric oxide. J. Am. Chem. Soc. 59, 2650–2652 (1937)

    CAS  Google Scholar 

  38. Platford, R.F.: Osmotic and activity coefficients of some simple borates in aqueous solutions at 25 °C. Can. J. Chem. 47, 2271–2273 (1969)

    CAS  Google Scholar 

  39. Kremers, R.: Ueber die modification der mittleren loslichkeit einiger salzatome und des mittleren volums dieser losungen. Annal. Phys. Chem. 103, 57–68 (1858)

    Google Scholar 

  40. Engel, R.: Solubility of chlorides in presence of hydrochloric acid. Ann. Chim. Phys. 13, 370–387 (1888)

    Google Scholar 

  41. Millikan, J.: Die oxyhaloide der alkalischen erden. gleichgewichte in ternaren systemen. I. Z. Physik. Chem. 92, 59−80 (1917)

  42. Wang, X., Zhao, K.Y., Guo, Y.F., Meng, L.Z., Li, D., Deng, T.L.: Experimental determination and thermodynamic model of solid–liquid equilibria in the ternary system (LiCl + SrCl2 + H2O) at 273.15 K and its application in industry. J. Solution Chem. 48, 528–545 (2019)

    CAS  Google Scholar 

  43. Linke, W.F., Seidell, A.: Solubilities, Inorganic and Metal-organic Compounds. American Chemical Society, Washington, D.C. (1965)

    Google Scholar 

  44. Harkins, W.D., Paine, H.M.: The effect of salts upon the solubility of other salts. VIIIa. The solubility relations of a very soluble bi-univalent salt. J. Am. Chem. Soc. 38, 2709–2714 (1916)

    CAS  Google Scholar 

  45. Benrath, A., Ammer, G.: Beitrage zur kenntnis der thallium−(1)–doppelhalogenide. Z. Anorg. Allgem. Chem. 177, 129−136 (1928−1929)

  46. Benrath, A.: Uber die systeme CoCl2−MeCl oder MeCl−H2O. Z. Anorg. Allgem. Chem. 163, 396–404 (1927)

    CAS  Google Scholar 

  47. Ehret, W.F.: Ternary systems CaCl2−Ca(NO3)2–H2O (25 °C), CaCl2−Ca(ClO3)2–H2O (25 °C), SrCl2−Sr(NO3)2–H2O (25 °C), KNO3−Pb(NO3)2–H2O(0 °C). J. Am. Chem. Soc. 54, 3126–3134 (1932)

    CAS  Google Scholar 

  48. Bassett, H., Barton, G.W., Foster, A.R., Pateman, R.J.: The ternary systems constituted by mercuric chloride, water, and an alkaline-earth chloride or cupric chloride. J. Chem. Soc. 151−164 (1933)

  49. Bassett, H., Gordon, H.F., Henshall, J.H.: The three-component systems composed of cobalt chloride and water with either calcium, strontium, or thorium chloride. J. Am. Chem. Soc. 56, 971–973 (1937)

    Google Scholar 

  50. Campbell, A.N., Campbell, A.J.R.: The systems (a) BaCl2−BaF2−H2O; (b) SrCl2−SrF2−H2O; (c) CaCl2−CaF2−H2O; (d) NaCl−NaF−H2O and (e) KCl−KF−H2O at 25 °C. Trans. Faraday Soc. 35, 241–246 (1939)

    CAS  Google Scholar 

  51. Kydynov, M., Lomteva, S.A., Druzhinin, I.G.: Solubility in the quaternary aqueous system containing lithium, sodium and strontium chlorides at 25 °C. Zh. Prikl. Khim. 42, 771–775 (1969)

    CAS  Google Scholar 

  52. Blidin, V.P.: Heterogeneous equilibria in the water ternary systems composed of LiCl with chlorides of barium, strontium and calcium. Dokl. Acad. Nauk SSSR 84, 947–950 (1952)

    CAS  Google Scholar 

  53. Krumgalz, B.S.: Temperature dependence of mineral solubility in water. Part I. Alkaline and alkaline earth chlorides. J. Phys. Chem. Ref. Data 46(043101), 1–16 (2017)

    Google Scholar 

  54. Bi, Y.J., Sun, B., Zhao, J., Song, P.S., Li, Wu.: Phase equilibrium in ternary system SrCl2−CaCl2−H2O at 25 °C. Chinese J. Inorg. Chem. 27, 1765–1771 (2011)

    CAS  Google Scholar 

  55. Shi, L.J., Sun, B., Ding, X.P., Song, P.S.: Phase equilibria in ternary system KCl−SrCl2−H2O at 25 °C. Chin. J. Inorg. Chem. 26, 333–338 (2010)

    CAS  Google Scholar 

  56. Ding, X.P., Sun, B., Shi, L.J., Yang, H.T., Song, P.S.: Study on phase equilibria in NaCl−SrCl2−H2O ternary system at 25 °C. Inorg. Chem. Ind. 42, 9–11 (2010)

    CAS  Google Scholar 

  57. Etard, A.: Recherches experimentales sur les solutions saturées. Ann. Chim. Phys. 2, 503–574 (1894)

    Google Scholar 

  58. Clynne, M.A., Potter, R.W.: Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures. J. Chem. Eng. Data 24, 338–340 (1979)

    CAS  Google Scholar 

  59. Li, D.W., Sang, S.H., Cui, R.Z., Wei, C.: Solid–liquid equilibria in the ternary systems NaCl−SrCl2−H2O and KCl−SrCl2−H2O at 348 K. J. Chem. Eng. Data 60, 1227–1232 (2015)

    CAS  Google Scholar 

  60. Li, D.W., Sang, S.H., Cui, R.Z., Wei, C., Wang, P.: Phase equilibria in the ternary systems MgCl2−SrCl2−H2O at 323 K and 348.15 K. J. Sichuan Univ. Nat. Sci. Ed. 52, 638–644 (2015)

    Google Scholar 

  61. Menzies, A.W.C.: A method of solubility measurement. Solubilities in the system SrCl2−H2O from 20 to 200 °C. J. Am. Chem. Soc. 58, 934–937 (1936)

    CAS  Google Scholar 

  62. Assarsson, G.O.: Equilibria in aqueous systems containing Sr2+, K+, Na+ and Cl. J. Phys. Chem. 57, 207–210 (1953)

    CAS  Google Scholar 

  63. Steiger, M.: Thermodynamic properties of SrCl2(aq) from 252 K to 524 K and phase equilibria in the SrCl2−H2O system: implications for thermochemical heat storage. J. Chem. Thermodyn. 120, 106–115 (2018)

    CAS  Google Scholar 

  64. Li, D.D., Zeng, D.W., Yin, X., Gao, D.D., Fan, Y.F.: Phase diagrams and thermochemical modeling of salt lake brine systems. IV. Thermodynamic framework and software implementation for multi-component systems. Calphad 71, 101806 (2020). https://doi.org/10.1016/j.calphad.2020.101806

    Article  CAS  Google Scholar 

  65. Helgeson, H., Kirkham, D., Flowers, G.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressure and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kbar. Am. J. Sci. 28, 1249–1516 (1981)

    Google Scholar 

  66. Shock, E., Helgeson, H.: Calculation of thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kbar and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)

    CAS  Google Scholar 

  67. Dick, J.: Calculation of the relative meta-stabilities of proteins using the CHNOSZ software package. Geochem. Trans. 9, 1–17 (2008)

    Google Scholar 

  68. Afeefy, H.Y., Liebman, J.F., Stein, S.E.: Neutral thermochemical data. In: Linstrom, P.J., Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD. 20899 (2020)

  69. Platford, R.F.: Thermodynamics of aqueous solutions of orthophosphoric acid from the freezing point to 298.15 K. J. Solution Chem. 4, 591–598 (1975)

    CAS  Google Scholar 

  70. Brandani, V., Del Re, G., Di Giacomo, G.: Thermodynamics of aqueous solutions of boric acid. J. Solution Chem. 17, 429–434 (1988)

    CAS  Google Scholar 

  71. Ward, G.K., Millero, F.J.: The enthalpies of dilution of aqueous boric acid solutions at several temperatures. J. Chem. Thermodyn. 5, 591–594 (1973)

    CAS  Google Scholar 

  72. Benrath, A.: Uber loslichkeit von salzen und salzgemischen in wasser bei temperaturen oberhalb von 100° C. Z. Anorg. Chem. 247, 147–160 (1941)

    CAS  Google Scholar 

  73. Goldberg, R.N., Nuttall, R.L.: Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides. J. Phys. Chem. Ref. Data 7, 263–310 (1978)

    CAS  Google Scholar 

  74. Rard, J.A., Mlller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous CsCl, SrCl2, and mixtures of NaCl and CsCl at 25 °C. J. Chem. Eng. Data 27, 169–173 (1982)

    CAS  Google Scholar 

  75. Guo, L.J., Sun, B., Zeng, D.W., Yao, Y., Han, H.J.: Isopiestic measurement and solubility evaluation of the ternary system LiCl−SrCl2−H2O at 298.15 K. J. Chem. Eng. Data 57, 817–827 (2012)

    CAS  Google Scholar 

  76. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures V. SrCl2, and BaCl2. J. Chem. Thermodyn. 13, 101–113 (1981)

    CAS  Google Scholar 

  77. Han, H.J., Guo, L.J., Li, D.D., Yao, Y.: Water activity and phase equilibria measurements and model simulation for the KCl−SrCl2−H2O system at 323.15 K. J. Chem. Eng. Data 62, 3753–3757 (2017)

    CAS  Google Scholar 

  78. Han, H.J., Ji, X., Ma, J.J., Xu, Z.F., Guo, L.J., Li, D.D., Yao, Y.: Water activity, solubility determination, and model simulation of the CaCl2−SrCl2−H2O ternary system at 323.15 K. J. Chem. Eng. Data 63, 1636–1641 (2018)

    CAS  Google Scholar 

  79. Macaskill, J.B., White, D.R., Robinson, R.A., Bates, R.G.: Isopiestic measurements on aqueous mixtures of sodium chloride and strontium chloride. J. Solution Chem. 7, 339–347 (1978)

    CAS  Google Scholar 

  80. Leung, W.H., Millero, F.J.: The enthalpy of dilution of some 1–1 and 2–1 electrolytes in aqueous solution. J. Chem. Thermodyn. 7, 1067–1078 (1975)

    CAS  Google Scholar 

  81. Zaytsev, I.D., Aseyev, G.G.: The Physical Chemical Properties of Binary and Multi-component Solutions of Inorganic Substances. Khimiya Press, Moscow (1988)

    Google Scholar 

  82. Perron, G., Desnoyers, J.E., Millero, F.J.: Apparent molal volumes and heat capacities of alkaline earth chloride in water at 25 °C. Can. J. Chem. 5, 3738–3741 (1974)

    Google Scholar 

  83. Saluja, P.P.S., LeBlanc, J.C.: Apparent molar heat capacities and volumes of aqueous solutions of MgCl2, CaCl2, and SrCl2, at elevated temperature. J. Chem. Eng. Data 32, 72–76 (1987)

    CAS  Google Scholar 

  84. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, 1−392 (1982)

  85. Jones, H.C., Getman, F.H.: A study of the molecular lowering of the freezing-point of water produced by concentrated solutions of electrolytes. Phys. Rev. 18, 146–183 (1904)

    CAS  Google Scholar 

  86. Morillon, V., Debeaufort, F., Jose, J., Tharraul, J.F., Capelle, M., Blond, G., Voilley, A.: Water vapour pressure above saturated salt solutions at low temperatures. Fluid Phase Equilib. 155, 297–309 (1999)

    CAS  Google Scholar 

  87. Stephen, H., Stephen, T.: Solubilities of Inorganic and Organic Compounds, Binary Systems, Part I. Pergamon, London (1963)

    Google Scholar 

  88. Richards, T.W., Yngve, V.: The transition temperatures of strontium chloride and strontium bromide as fixed points in thermometry. J. Am. Chem. Soc. 40, 89–95 (1918)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Nature Science Foundation of China−Qinghai Government United Project on Qaidam Salt Lake Chemical Engineering Science (U1707602, U1607102 and U1407131) and the “National Key R&D Program of China” Project (2017YFC0602805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Li or Dewen Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Li, D., Zeng, D. et al. Solubility Isotherm Determinations at T = (273.15, 298.15, 323.15, 348.15 and 363.15) K and Thermodynamic Modeling of the H3BO3 + SrCl2 + H2O System. J Solution Chem 50, 771–791 (2021). https://doi.org/10.1007/s10953-021-01077-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01077-4

Keywords

Navigation