Skip to main content
Log in

Dynamical Approach to Multi-Equilibria Problems Considering the Debye–Hückel Theory of Electrolyte Solutions: Concentration Quotients as a Function of Ionic Strength

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We recently described a dynamical approach to the equilibrium problem that involves the formulation of the kinetic rate equations for each species. The equilibrium concentrations are determined by evolving the initial concentrations via this dynamical system to their steady state values. This dynamical approach is particularly attractive because it can be extended easily to very large multi-equilibria systems and the effects of ionic strength also are easily included. Here we describe mathematical methods for the determination of steady state concentrations of all species with the consideration of their activities using several approximations of Debye–Hückel theory of electrolyte solutions. We describe the equations for a system that consists of a triprotic acid H3A and its conjugate bases. With these equations, two types of multi-equilibria systems were studied and compared to experimental data. The first system is exemplified by case studies of solutions of acetate-buffered acetic acid and the second system is exemplified by the hydroxide titration of citric acid. The discussion focuses on the effect of ionic strength on pH and on the amplification of acidity by ionic strength. Ionic strength effects are shown to cause significant deviations from the widely used Henderson–Hasselbalch equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberty, R.A.: Changes in the standard transformed thermodynamic properties of enzyme-catalyzed reactions with ionic strength. J. Phys. Chem. B 111, 3847–3852 (2007)

    Article  CAS  Google Scholar 

  2. Alberty, R.A.: Calculation of equilibrium compositions of systems of enzyme-catalyzed reactions. J. Phys. Chem. B 110, 24775–24779 (2006)

    Article  CAS  Google Scholar 

  3. Zidar, J., Merzel, F.: Probing amyloid-beta fibril stability by increasing ionic strengths. J. Phys. Chem. B 115, 2075–2081 (2011)

    Article  CAS  Google Scholar 

  4. Markarian, M.Z., Schlenoff, J.B.: Effect of molecular crowding and ionic strength on the isothermal hybridization of oligonucleotides. J. Phys. Chem. B 114, 10620–10627 (2010)

    Article  CAS  Google Scholar 

  5. Tong, W., Song, H., Gao, C., Möhwald, H.: Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity. J. Phys. Chem. B 110, 12905–12909 (2006)

    Article  CAS  Google Scholar 

  6. Bolel, P., Datta, S., Mahapatra, N., Halder, M.: Exploration of pH-dependent behavior of the anion receptor pocket of subdomain IIA of HSA: determination of effective pocket charge using the Debye − Hückel limiting law. J. Phys. Chem. B 118, 26–36 (2014)

    Article  CAS  Google Scholar 

  7. Harris, D.C.: Quantitative Chemical Analysis, 8th edn. W.H. Freeman and Company, New York (2010)

    Google Scholar 

  8. Fox, S.I.: Cell Respiration and Metabolism. In: Fox, S.I. (ed.) Human Physiology, 13th edn, pp. 111–112. McGraw-Hill, New York (2013)

    Google Scholar 

  9. Santo-Domingo, J., Demaurex, N.: The renaissance of mitochondrial pH. J. Gen. Physiol. 139, 415–423 (2012)

    Article  CAS  Google Scholar 

  10. Ballantyne, J.S., Moyes, C.D.: The role of divalent cations and ionic strength in the osmotic sensitivity of glutamate oxidation in oyster gill mitochondria. J. Exp. Biol. 130, 203–217 (1987)

    CAS  Google Scholar 

  11. Arena, G., Calì, R., Grasso, M., Musumeci, S., Sammartano, S.: The formation of proton and alkali-metal complexes with ligands of biological interest in aqueous solution. Part 1. Potentiometric and calorimetric investigation of H+ and Na+ complexes with citrate, tartrate, and malate. Thermochim. Acta 36, 329–342 (1980)

    Article  CAS  Google Scholar 

  12. McIlvaine, T.C.: A buffer system for colorimetric comparison. J. Biol. Chem. 49, 183–186 (1921)

    CAS  Google Scholar 

  13. Voinescu, A.E., Bauduin, P., Pinna, M.C., Touraud, D., Ninham, B.W., Kunz, W.: Similarity of salt influences on the pH of buffers, polyelectrolytes, and proteins. J. Phys. Chem. B 110, 8870–8876 (2006)

    Article  CAS  Google Scholar 

  14. Salis, A., Bilaničová, D., Ninham, B.W., Monduzzi, M.: Hofmeister effects in enzymatic activity: weak and strong electrolyte influences on the activity of candida rugosa lipase. J. Phys. Chem. B 111, 1149–1156 (2007)

    Article  CAS  Google Scholar 

  15. Vandeventer, P.E., Lin, J.S., Zwang, T.J., Nadim, A., Johal, M.S., Niemz, A.: Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength Conditions. J. Phys. Chem. B 116, 5661–5670 (2012)

    Article  CAS  Google Scholar 

  16. Akelis, L., Rousseau, J., Juskenas, R., Dodonova, J., Rousseau, C., Menuel, S., Prevost, D., Tumkevičius, S., Monflier, E., Hapiot, F.: Greener Paal-Knorr pyrrole synthesis by mechanical activation. Eur. J. Org. Chem. 1, 31–35 (2016)

    Article  Google Scholar 

  17. Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697 (1967)

  18. Graca, M.P.F., Prezas, P.R., Costa, M.M., Valente, M.A.: Structural and dielectric characterization of LiNbO3 nano-size powders obtained by Pechini. J. Sol–Gel. Sci. Technol. 64, 78–85 (2012)

    Article  CAS  Google Scholar 

  19. Wang, L.H., Yuan, D.R., Duan, X.L., Wang, X.Q., Yu, F.P.: Synthesis and characterization of fine lithium niobate powders by sol-gel method. Cryst. Res. Technol. 42, 321–324 (2007)

    Article  CAS  Google Scholar 

  20. Xia, H., Xiahou, Y., Zhang, P., Ding, W., Wang, D.: Revitalizing the Frens method to synthesize uniform, quasispherical gold nanoparticles with deliberately regulated sizes from 2 to 330 nm. Langmuir 32, 5870–5880 (2016)

    Article  CAS  Google Scholar 

  21. Aumiller, W.M., Bradley, W., Davis, B.W., Hashemian, N., Maranas, C., Armaou, A., Keating, C.D.: Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system. J. Phys. Chem. B 118, 2506–2517 (2014)

    Article  CAS  Google Scholar 

  22. Garg, N.K., Mangal, S., Sahu, T., Mehta, A., Vyas, S., Tyagi, R.: Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide. Asian Pac. J. Trop. Biomed. 1, 57–63 (2011)

    Article  CAS  Google Scholar 

  23. Choi, E.-Y., Kim, H.-J., Hana, J.-S.: Anti-inflammatory effects of calcium citrate in RAW 264.7 cells via suppression of NF-B activation. Environ. Toxicol. Pharmacol. 39, 27–34 (2015)

    Article  CAS  Google Scholar 

  24. Wang, F., Huang, P.-J., Liu, J.: Citrate inhibition of cisplatin reaction with DNA studied using fluorescently labeled oligonucleotides: implication for selectivity towards guanine. Chem. Commun. 49, 9482–9484 (2013)

    Article  CAS  Google Scholar 

  25. Glaser, R.E., Delarosa, M.A., Salau, A.O., Chicone, C.: Dynamical approach to multi-equilibria problems for mixtures of acids and their conjugated bases. J. Chem. Educ. 91, 1009–1016 (2014)

    Article  CAS  Google Scholar 

  26. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI: a complex pathway simulator. Bioinformatics 22, 3067–3074 (2006)

    Article  CAS  Google Scholar 

  27. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  Google Scholar 

  28. Dickenstein, A., Millán, M.P.: How far is complex balancing from detailed balancing? Bull. Math. Biol. 73, 811–828 (2011)

    Article  CAS  Google Scholar 

  29. Wu, J., Vidakovic, B., Voit, E.O.: Constructing stochastic models from deterministic process equations by propensity adjustment. BMC Syst. Biol. 5, 187–208 (2011)

    Article  Google Scholar 

  30. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Studies in Nonlinearity. Westview Press, Boulder (2001)

    Google Scholar 

  31. Fuchs, A.: Nonlinear Dynamics in Complex Systems: Theory and Applications for the Life- Neuro- and Natural Sciences. Springer, New York (2013)

    Book  Google Scholar 

  32. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems (Universitext). Springer, New York (2013)

    Google Scholar 

  33. Epstein, I.R., Pojman, J.A. (eds.): An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York (1998)

    Google Scholar 

  34. Gray, P., Scott, S.K.: Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics. Oxford University Press, New York (1994)

    Google Scholar 

  35. Field, R.J., Gyorgyi, L. (eds.): Chaos in Chemistry and Biochemistry. World Scientific Publishing Co., Hackensack (1993)

    Google Scholar 

  36. Perrin, D.D., Dempsey, B.: Buffers for pH and Metal Ion Control. Chapman and Hall, London (1974)

    Google Scholar 

  37. Baeza-Baeza, J.J., García-Álvarez-Coque, M.C.: Systematic approach for the concentrations of chemical species in multiequilibrium problems: inclusion of the ionic strength effects. J. Chem. Educ. 89, 900–904 (2012)

    Article  CAS  Google Scholar 

  38. de Vicente, M.S.: Ionic strength effects on acid-base equilibria. Rev. Curr. Top. Solut. Chem. 2, 157–181 (1997)

    Google Scholar 

  39. Brezonik, P.L.: Chemical Kinetics and Process Dynamics in Aquatic Systems, 1st edn. CRC Press, 155ff, Boca Raton (1993)

    Google Scholar 

  40. Butler, J.N.: Ionic Equilibrium: Solubility and pH Calculations. Wiley-Interscience, 41ff, New York (1998)

    Google Scholar 

  41. Partanen, J.I.: Prediction of activity coefficients of univalent electrolytes in pure aqueous solutions at 298.15 K by means of equations containing no adjustable parameters. Trends Phys. Chem. 11, 31–60 (2006)

    CAS  Google Scholar 

  42. Davies, C.W.: Ion association and the viscosity of dilute electrolyte solutions. Part 1. Aqueous inorganic salt solutions. Trans. Faraday Soc. 60, 2075–2084 (1964)

    Article  CAS  Google Scholar 

  43. Burden, R.L., Faires, J.D.: Numerical Analysis. Cengage Learning, Boston (2010)

    Google Scholar 

  44. Wolfram Mathematica 9.0, Wolfram Research Inc.

  45. Smith, W.R., Missen, R.W.: Using Mathematica and Maple to obtain chemical equations. J. Chem. Educ. 74, 1369–1371 (1997)

    Article  CAS  Google Scholar 

  46. Wolfram Mathematica 9.0 Documentation Center, Wolfram Research Inc. http://reference.wolfram.com/mathematica/ref/NDSolve.html (2016). Accessed 10 Dec 2016

  47. Davies, C.W.: The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Soc. (1938). doi:10.1039/JR9380002093

    Google Scholar 

  48. Bretti, C., De Stefano, C., Foti, C., Sammartano, S.: Critical evaluation of protonation constants. Literature analysis and experimental potentiometric and calorimetric data for the thermodynamics of phthalate protonation in different ionic media. J. Solution Chem. 35, 1227–1244 (2006)

    Article  CAS  Google Scholar 

  49. Long, F.A., McDevit, W.F.: Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Rev. 51, 119–169 (1952)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research PRF-53415-ND4. This research was supported by NSF-PRISM grant Mathematics and Life Sciences (MLS, #0928053). M.A.D. has been supported as an MLS Fellow. EZ was supported by the Honors College Discovery Fellowship and the Arts & Sciences Undergraduate Research Mentorship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Glaser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zars, E., Schell, J., Delarosa, M.A. et al. Dynamical Approach to Multi-Equilibria Problems Considering the Debye–Hückel Theory of Electrolyte Solutions: Concentration Quotients as a Function of Ionic Strength. J Solution Chem 46, 643–662 (2017). https://doi.org/10.1007/s10953-017-0593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0593-z

Keywords

Navigation