Skip to main content
Log in

Acid–Base, Complexing and Spectral Properties of Thiobarbituric Acid and Its 1,3-Derivatives in Aqueous Solutions: Spectrophotometric and Quantum Chemical Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The acid–base properties of 2-thiobarbituric, 1,3-diethyl-, and 1,3-dibutyl-2-thiobarbiturc acids and the thermodynamics of their complexation with Ag(I) ions in aqueous solutions have been investigated using a spectrophotometric technique and ab initio calculations. The free acids primarily exist in keto-form and undergo enolization in neutral aqueous solutions. They undergo protonation via free oxygen atoms in acidic conditions. It has been discovered that 1,3-diethyl-2-thiobarbiturc acid behaves as a S-donor ligand under these conditions. The TD–DFT calculations of all the thiobarbiturc acids have revealed π–π* transitions from the sulfur and oxygen atoms in the ring. The complexation with Ag(I) ions lead to the transition of the z2 orbital of silver and π orbitals of sulfur into π* orbitals of a ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. da Marisco, C.M., Ribeiro, C.P., Bonini, J.S.: Ammonia potentiates methylmalonic acid-induced convulsions and TBARS production. Exp. Neurol. 182, 455–460 (2003)

    Article  CAS  Google Scholar 

  2. Farias, I.L., Farias, J.G., Rossato, L., Araújo, M.C., Chiesa, J.: Correlation between TBARS levels and glycolytic enzymes: the importance to the initial evaluation of clinical outcome of colorectal cancer patients. Biomed. Pharmacother. 65, 395–400 (2011)

    Article  CAS  Google Scholar 

  3. Hoda, A.A., Mostafa, I.E., Laila, A.R.: Thiobarbituric acid reactive substance (TBARS) a marker of oxidative stress in obstructive sleep apnea. Egypt. J. Chest Dis. Tuberc. 63, 119–124 (2014)

    Article  Google Scholar 

  4. Barc, S., Stadelmann, S.I.: Effect of ischemia on TBARS and lactate production in several cerebral regions of anaesthetised and awake rats. Life Sci. 74, 3103–3113 (2004)

    Article  CAS  Google Scholar 

  5. Ezzaher, A., Mouhamed, D.H., Mechri, A.: TBARs and non-enzymatic antioxidant parameters in Tunisian bipolar I patients. Immuno-Anal. Biol. Spéc. 27, 315–324 (2012)

    Google Scholar 

  6. Diaz, P., Linares, M.B., Egea, M., Linares, M.B.: Egea, M.: TBARs distillation method: Revision to minimize the interference from yellow pigments in meat products. Meat Sci. 98, 569–573 (2014)

    Article  CAS  Google Scholar 

  7. Nowak, D., Katucka, S., Biatasiewicz, P.: Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic. Biol. Med. 30, 178–186 (2011)

    Article  Google Scholar 

  8. Papastergiadis, A., Mubiru, E., Van Langenhove, H.: Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. J. Agric. Food Chem. 60, 9589–9594 (2012)

    Article  CAS  Google Scholar 

  9. de Azevedo, G., da Silva, E., Nascimento, M.R.: Evaluation of the 2-thiobarbituric acid method for the measurement of lipid oxidation in mechanically deboned gamma irradiated chicken meat. Food Chem. 80, 433–437 (2003)

    Article  Google Scholar 

  10. Guillén-Sans, R.M., Guzmán-Chozas, N.: The thiobarbituric acid (TBA) reaction in foods: a review. Crit. Rev. Food Sci. Nutr. 38, 315–330 (1998)

    Article  Google Scholar 

  11. Faidallah, H.M., Khan, K.A.: Synthesis and biological evaluation of new barbituric and thiobarbituric acid fluoro analogs of benzenesulfonamides as antidiabetic and antibacterial agents. J. Fluor. Chem. 142, 96–104 (2012)

    Article  CAS  Google Scholar 

  12. Liang, M., Li, S., Zheng, H.: Synthesis and biological activity of novel barbituric and thiobarbituric acid derivatives against non-alcoholic fatty liver disease. Eur. J. Med. Chem. 46, 2003–2010 (2011)

    Article  Google Scholar 

  13. Bloom, R.J., Westerfeld, W.W.: The thiobarbituric acid reaction in relation to fatty livers. Arch. Biochem. Biophys. 145, 669–675 (1971)

    Article  CAS  Google Scholar 

  14. Suda, I., Furuta, S., Nishiba, Y.: Fluorometric determination of a 1,3-diethyl-2-thiobarbituric malondialdehyde adduct as an index of lipid peroxidation in plant. Biotechnol. Biochem. 58, 14–17 (1994)

    Article  CAS  Google Scholar 

  15. Tabassum, S., Siddiqi, K.S., Khan, N.H., Kureshy, R.I.: Studies on complexes of thiobarbituric and 5,5-diethylbarbituric acid with lanthanide ions. Ind. J. Chem. 26, 489–495 (1987)

    Google Scholar 

  16. Moamen, S.R., El-Korashy, S.A., Ahmed, A.S.: A convenient method for the preparation of barbituric and thiobarbituric acid transition metal complexes. Spectrochim. Acta Part A 71, 1084–1094 (2008)

    Article  Google Scholar 

  17. Masoud, M.S., El-Dessouky, M.A.: Transition metal (disubstitutedphenylazo)-barbituric and thiobarbituric acid complexes. Trans. Met. Chem. 15, 443–448 (1990)

    Article  CAS  Google Scholar 

  18. Li, X., Wu, D., Gu, Y., Gan, F.: Synthesis, spectral and thermal properties of some transition metal(II) complexes with a novel ligand derived from thiobarbituric acid. Therm. Anal. Calorim. 98, 387–394 (2009)

    Article  CAS  Google Scholar 

  19. Murphy, R.J., Svehla, G.: An analytical study of metal–thiobarbituric acid complexes. Anal. Chim. Acta 99, 115–124 (1978)

    Article  CAS  Google Scholar 

  20. Balas, R., Verginadis, S., Geromichalos, G., Kourkoumelis, N., Male, L.: Synthesis, structural characterization and biological studies of the triphenyltin(IV) complex with 2-thiobarbituric acid. Eur. J. Med. Chem. 46, 2835–2844 (2011)

    Article  CAS  Google Scholar 

  21. Zambrzycka, E., Godlewska-Zytkiewicz, B.: A new ion imprinted polymer based on Ru(III)–thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS. Microchim. Acta 181, 1019–1027 (2005)

    Article  Google Scholar 

  22. Golovnev, N.N., Molokeev, M.S., Vereshchagin, S.N.: The cis–trans isomer transformation, spectroscopic and thermal properties of Li, Na, K 1,3-diethyl-2-thiobarbiturate complexes. Polyhedron 85, 493–498 (2015)

    Article  CAS  Google Scholar 

  23. Golovnev, N.N., Molokeev, M.S., Golovneva, I.: The crystal structure of lead(II) 1,3-diethyl-2-thiobarbiturate. Russ. J. Coord. Chem. 41, 300–304 (2015)

    Article  CAS  Google Scholar 

  24. Loginovaa, N.V., Chernyavskayaa, G.I., Polozova, T.V.: Silver(I) interaction and complexation with sterically hindered sulfur-containing diphenol derivatives. Polyhedron 24, 611–618 (2005)

    Article  Google Scholar 

  25. Lansdown, A.B.: A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharm. Sci. 2010, 1–16 (2010)

    Article  Google Scholar 

  26. Eliseeva, S.V., Bunzli, J.-C.G.: Rare earths: jewels for functional materials of the future. New J. Chem. 35, 1165–1176 (2011)

    Article  CAS  Google Scholar 

  27. Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P.: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)

    Article  CAS  Google Scholar 

  28. http://www.cluster.sfu-kras.ru (accessed April 1, 2015)

  29. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999)

    Article  CAS  Google Scholar 

  30. Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  31. Peterson, K.A., Puzzarini, C.: Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 114, 283–296 (2005)

    Article  CAS  Google Scholar 

  32. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009)

    Article  CAS  Google Scholar 

  33. Zhurko, G.A.: ChemCraft, version 1.7. http://www.chemcraftprog.com (accessed March 1, 2015)

  34. Leggett, D.J.: Computational Methods for the Determination of Formation Constants. Plenum Press, New York (1985)

    Book  Google Scholar 

  35. Tiwari, S., Ghosh, K.K.: Mixed micellization properties of cationic monomeric and gemini surfactants. J. Chem. Eng. Data 55, 4162–4167 (2010)

    Article  Google Scholar 

  36. Cox, R.: Acidity functions: an update. Can. J. Chem. 61, 2225–2229 (1983)

    Article  CAS  Google Scholar 

  37. Cox, R.: The excess acidity of aqueous HCl and HBr media. An improved method for the calculation of X-functions and H. Can. J. Chem. 59, 2023–2028 (1981)

    Google Scholar 

  38. Celik, H., Büyükaga, M.: Determination of pK a values of some benzoxazoline derivatives and the structure–activity relationship. J. Chem. Eng. Data 58, 1589–1596 (2013)

    Article  CAS  Google Scholar 

  39. http://www.scilab.org/ (accessed July 1, 2015)

  40. Grebenyuk, S.A., Perepichka, I.F., Popov, A.F.: Evaluation of the parameters of 1:1 charge transfer complexes from spectrophotometric data by non-linear numerical method. Spectrochim. Acta Part A 58, 2913–2923 (2002)

    Article  Google Scholar 

  41. Mendez, E., Cerda, M.F., Gancheff, J.S.: Tautomeric forms of 2-thiobarbituric acid as studied in the solid, in polar solutions, and on gold nanoparticles. J. Phys. Chem. C 111, 3369–3383 (2007)

    Article  CAS  Google Scholar 

  42. TellezSoto, C.A., Ramos, J.M., Junior, A.C.: Surface enhancement Raman scattering of tautomericthiobarbituric acid: natural bond orbitals and B3LYP/6311+G(d, p) assignments of the Fourier infrared and Fourier Raman spectra. Spectrochim. Acta A 114, 475–485 (2013)

    Article  CAS  Google Scholar 

  43. Petrov, A.I., Lutoshkin, M.A., Taydakov, I.V.: Aqueous complexation of Y(III), La(III), Nd(III), Sm(III), Eu(III), and Yb(III) with some heterocyclic substituted β-diketones. Eur. J. Inorg. Chem. 6, 1074–1082 (2015)

    Article  Google Scholar 

  44. Street, H.V., McMartin, C.: Action of concentrated sulphuric acid on 5,5-disubstituted barbituric acid derivatives. Clin. Chim. Actu. 9, 301–308 (1964)

    Article  CAS  Google Scholar 

  45. Maynert, E.W., Washbur, E.: Reactions of barbituric acids in sulfuric acid. J. Am. Chem. Soc. 75, 700–704 (1953)

    Article  CAS  Google Scholar 

  46. Singh, B.R., Jain, R.K., Jain, M.K., Ghosh, R.: Thermodynamics of the interaction of some transition metal ions with some N-substituted thiobarbituric acids. Thermochim. Acta 78, 175–180 (1984)

    Article  CAS  Google Scholar 

  47. Smyth, W.F., Svehla, G., Zuman, P.: Polarographic and spectral investigation of acid–base equilibria in aqueous solutions of 2-thiobarbituric acids with substituents on sulphur. Anal. Chim. Acta 52, 129–138 (1970)

    Article  CAS  Google Scholar 

  48. Izquerdo, A., Beltran, J., Guitras, L.: Thermodynamic properties of the dissociation of 2-mercaptopyridine, 2-mercaptopyrimidine and 2-thiobarbituric acid. Thermochim. Acta 127, 81–88 (1988)

    Article  Google Scholar 

  49. Blais, M.S., Enea, O., Berthon, G.: Relations structure–réactivité grandeurs thermodynamiques de protonation geterocycles saturés et non saturés. Thermochim. Acta 20, 335–338 (1977)

    Article  CAS  Google Scholar 

  50. Sansand, R.G., Chozas, M.G.: Spectrophotometric evaluation of ionization constants of some arylidene thiobarbituric acids. Microchem. J. 37, 40–50 (1988)

    Article  Google Scholar 

  51. Cox, R.A., Clinton, R.S., Yates, K.: The excess acidity method. The basicities, and rates and mechanisms of enolization, of some acetoghenones and acetone, in moderately concentrated sulfuric acid. Can. J. Chem. 57, 2952–2959 (1979)

    Article  CAS  Google Scholar 

  52. Burgot, J.-L.: Ionic Equilibria in Analytical Chemistry, pp. 452–458. Springer, Dordrecht (2012)

    Book  Google Scholar 

  53. Blais, M.-J., Berthon, G.: Formation constants for complexes of silver with some heterocyclic ligands containing nitrogen and sulphur as donor atoms. J. Inorg. Nucl. Chem. 41, 933–935 (1979)

    Article  CAS  Google Scholar 

  54. Golovnev, N.N., Molokeev, M.S., Lutoshkin, M.A.: Crystal structure of catena-(μ4-1,3-diethyl-2-thiobarbiturato-O, O′, S, S′) silver(I). Russ. J. Inorg. Chem. 60, 572–576 (2015)

    Article  CAS  Google Scholar 

  55. Crugeiras, J., Ríos, A., Maskill, H.J.: DFT and AIM Study of the protonation of nitrous acid and the pK a of nitrous acidium ion. J. Phys. Chem. 115, 12357–12363 (2011)

    Article  CAS  Google Scholar 

  56. Bryantsev, V.S., Mamadou, S.D., Goddard III, W.A.: Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J. Phys. Chem. B. 112, 9709–9719 (2008)

    Article  CAS  Google Scholar 

  57. Vukovic, S., Hay, B.P., Bryantsev, V.S.: Predicting stability constants for uranyl complexes using density functional theory. Theor. Inorg. Chem. 54, 3995–4001 (2015)

    Article  CAS  Google Scholar 

  58. Kumari, P., Chandran, P., Sudheer, K.S.: Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications. J. Photochem. Photobiol. B 141, 235–240 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research has been funded and carried out in terms of state contract (No. 3049) of Ministry of Education and Science of Russian Federation. The authors would also like to thank SFU CEJU for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Lutoshkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutoshkin, M.A., Petrov, A.I. & Golovnev, N.N. Acid–Base, Complexing and Spectral Properties of Thiobarbituric Acid and Its 1,3-Derivatives in Aqueous Solutions: Spectrophotometric and Quantum Chemical Approach. J Solution Chem 45, 1453–1467 (2016). https://doi.org/10.1007/s10953-016-0525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0525-3

Keywords

Navigation