Skip to main content
Log in

Modelling the Hydrolysis of Mixed Mono-, Di- and Trimethyltin(IV) Complexes in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The formation of mixed hydrolytic species obtained by the interaction of dimethyltin(IV) {(CH3)2Sn2+ or DMT or M22+} with the monomethyltin(IV) (CH3Sn3+ or MMT or M13+) and trimethyltin(IV) {(CH3)3Sn+ or TMT or M3+} cations was studied in aqueous solutions of NaNO3, at I = 1.00 ± 0.05 mol·dm−3 and T = (298.15 ± 0.1) K, by the potentiometric technique. The formation of several mono- and polynuclear hydrolytic mixed species was observed in the two mixed systems. For the (M1) p (M2) q (OH) r mixed species we have: (p, q, r) = (1, 1, 3), (1, 1, 4), (1, 1, 5), (2, 1, 5), (2, 1, 7), (1, 3, 6) and (2, 3, 11); for (M2) p (M3) q (OH) r : (p, q, r) = (1, 1, 2), (1, 1, 3), (1, 2, 3), (1, 2, 4), (2, 1, 4), (3, 1, 4) and (3, 1, 5). The stability of these species, expressed by the following general equilibrium:

$$ p {\text{Mi}}^{n + } + q {\text{Mj}}^{j + } + r {\text{OH}}^{-} \rightleftharpoons \left( {\text{Mi}} \right)_{p} \left( {\text{Mj}} \right)_{q} \left( {\text{OH}} \right)_{r}^{{\left( {np + jq{-}r} \right)}} \quad \beta_{pqr}^{\text{OH}} $$

can be modelled by the empirical relationship that depends on the stoichiometry of the species:

$$ \log_{10} \beta_{pqr}^{\text{OH}} = a_{1} p + a_{2} q + a_{3} r {-} y $$

For the (M1) p (M2) q (OH) r species: a 1 = 6.98, a 2 = 2.73, a 3 = 9.93 and y = 1.14, while for the (M2) p (M3) q (OH) r species: a 1 = 5.03, a 2 = 1.00, a 3 = 8.04 and y = 1.71. By using the equilibrium constant X pqr relative to the formation reactions:

$$ p\left( {{\text{M}}1} \right)_{{\left( {p + q} \right)}} \left( {\text{OH}} \right)_{r} + q\left( {{\text{M}}2} \right)_{{\left( {p + q} \right)}} \left( {\text{OH}} \right)_{r} \rightleftharpoons \left( {p + q} \right)\left( {{\text{M}}1} \right)_{p} ({\text{M}}2)_{q} \left( {\text{OH}} \right)_{r} $$

and

$$ p({\text{M}}2)_{{\left( {p + q} \right)}} \left( {\text{OH}} \right)_{r} + q({\text{M}}3)_{{\left( {p + q} \right)}} \left( {\text{OH}} \right)_{r } \rightleftharpoons \left( {p + q} \right)\left( {{\text{M}}2} \right)_{p} ({\text{M}}3)_{q} \left( {\text{OH}} \right)_{r} $$

we found that the formation of hetero-metal mixed species is thermodynamically favored and the extra stability can be expressed as a function of the difference in the stability of the parent homo-metal species. This leads, in turn, to a significant enhancement of hydrolysis. The general stability and extra stability behavior of mixed-metal (or organometal) species is discussed while also considering previous findings from this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Millero, F.J.: Physical Chemistry of Natural Waters. Wiley-Interscience Series in Geochemistry. Wiley, New York (2001)

    Google Scholar 

  2. Amico, P., Arena, G., Daniele, P.G., Ostacoli, G., Rizzarelli, E., Sammartano, S.: Mixed-metal complexes in solution. 3. Thermodynamic study of heterobinuclear copper(II)–l-histidine and -histamine complexes in aqueous solution. Inorg. Chem. 20, 772–777 (1981)

    Article  CAS  Google Scholar 

  3. Amico, P., Daniele, P.G., Ostacoli, G., Arena, G., Rizzarelli, E., Sammartano, S.: Mixed metal complexes in solution. Part 4. Formation and stability of heterobinuclear complexes of cadmium(II)–citrate with some bivalent metal Ions in aqueous solution. Transit. Met. Chem. 10, 11–14 (1985)

    Article  CAS  Google Scholar 

  4. Bretti, C., Cigala, R.M., Crea, F., Sammartano, S.: Mixing effects on the protonation of some polycarboxylates in NaClaq + KClaq at different ionic strengths. Talanta 72, 1059–1065 (2007)

    Article  CAS  Google Scholar 

  5. Cigala, R.M., Crea, F., De Stefano, C., Milea, D., Sammartano, S., Scopelliti, M.: Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatsh Chem. 144, 761–772 (2013)

    Article  CAS  Google Scholar 

  6. Cigala, R.M., Crea, F., De Stefano, C., Sammartano, S.: Mixing effects on the protonation of polycarboxylates. Protonation of benzenehexacarboxylate in LiCl–KCl, NaCl–KCl, NaCl–LiCl and LiCl–CsCl aqueous solutions at I = 1 mol L−1 and T = 298.15 K. J. Chem. Eng. Data 54, 2137–2139 (2009)

    Article  CAS  Google Scholar 

  7. Cigala, R.M., Crea, F., Sammartano, S.: Mixing effects on the protonation of polyacrylate in LiCl/KCl aqueous solutions at different ionic strengths. I = 1 to 3.5 mol L−1, at T = 298.15 K. J. Mol. Liq. 143, 129–133 (2008)

    Article  CAS  Google Scholar 

  8. Cigala, R.M., De Stefano, C., Giacalone, A., Gianguzza, A., Sammartano, S.: Enhancement of hydrolysis through the formation of mixed heterometal species: Al3+/CH3Sn3+ mixtures. J. Chem. Eng. Data 58, 821–826 (2013)

    Article  CAS  Google Scholar 

  9. Crea, F., Crea, P., De Stefano, C., Milea, D., Sammartano, S.: Speciation of phytate ion in aqueous solution. Protonation in CsClaq at different ionic strengths and mixing effects in LiClaq + CsClaq. J. Mol. Liq. 138, 76–83 (2008)

    Article  CAS  Google Scholar 

  10. Crea, F., Milea, D., Sammartano, S.: Enhancement of hydrolysis through the formation of mixed hetero-metal species: dioxouranium(VI)–cadmium(II) mixtures. Ann. Chim. (Rome) 95, 767–778 (2005)

    Article  CAS  Google Scholar 

  11. Crea, F., Milea, D., Sammartano, S.: Enhancement of hydrolysis through the formation of mixed hetero-metal species. Talanta 65, 229–238 (2005)

    Article  CAS  Google Scholar 

  12. Crea, P., De Stefano, C., Milea, D., Sammartano, S.: Formation and stability of mixed Mg2+/Ca2+/phytate species in seawater media. Consequences on ligand speciation. Mar. Chem. 112, 142–148 (2008)

    Article  CAS  Google Scholar 

  13. Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)

    Article  CAS  Google Scholar 

  14. Cigala, R.M., De Stefano, C., Giacalone, A., Gianguzza, A., Sammartano, S.: Hydrolysis of monomethyl- dimethyl and trimethyltin(IV) cations in fairly concentrated aqueous solutions at I = 1 mol L−1 (NaNO3) and T = 298.15 K. Evidences for the predominance of polynuclear species. J. Chem. Eng. Data 56, 1108–1115 (2011)

    Article  CAS  Google Scholar 

  15. Braibanti, A., Ostacoli, G., Paoletti, P., Pettit, L.D., Sammartano, S.: Recommended procedure for testing the potentiometric apparatus and technique for the pH-metric measurement of metal-complex equilibrium constants. Pure Appl. Chem. 59, 1721–1728 (1987)

    Article  CAS  Google Scholar 

  16. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: an improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987)

    Google Scholar 

  17. De Stefano, C., Mineo, P., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. XVII. The calculation of equilibrium concentrations and formation constants. Ann. Chim. (Rome) 83, 243–277 (1993)

    Google Scholar 

  18. De Stefano, C., Foti, C., Giuffrè, O., Mineo, P., Rigano, C., Sammartano, S.: Binding of tripolyphosphate by aliphatic amines: formation, stability and calculation problems. Ann. Chim. (Rome) 86, 257–280 (1996)

    Google Scholar 

  19. Cigala, R.M., De Stefano, C., Giacalone, A., Gianguzza, A.: Speciation of Al3+ in fairly concentrated solutions (20–200 mmol L−1) at I = 1 mol L−1 (NaNO3), in the acidic pH range, at different temperatures. Chem. Speciat. Bioavailab. 23, 33–37 (2011)

    Article  CAS  Google Scholar 

  20. Gianguzza, A., Giuffrè, O., Piazzese, D., Sammartano, S.: Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coord. Chem. Rev. 256, 222–239 (2012)

    Article  CAS  Google Scholar 

  21. El-Sherif, A.E.: Solution coordination chemistry of organotin(IV) cations with bio-relevant ligands. J. Solution Chem. 41, 1522–1554 (2012)

    Article  CAS  Google Scholar 

  22. Pellerito, L., Nagy, L.: Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 224, 111–150 (2002)

    Article  CAS  Google Scholar 

  23. Cigala, R.M., Crea, F., De Stefano, C., Foti, C., Milea, D., Sammartano, S.: Zinc(II) complexes with hydroxocarboxylates and mixed metal species with tin(II) in different salts aqueous solutions at different ionic strengths: formation, stability and weak interactions with supporting electrolytes. Monatshefte für Chemie - Chemical Monthly (2015). doi:10.1007/s00706-014-1394-3

    Google Scholar 

  24. Foti, C., Gianguzza, A., Milea, D., Sammartano, S.: Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters. Appl. Organomet. Chem. 16, 34–43 (2002)

    Article  CAS  Google Scholar 

  25. Grenthe, I., Puigdomenech, I.: In: Modelling in Aquatic Chemistry. Nuclear Energy Agency (OECD), Stockholm (1997)

  26. De Stefano, C., Sammartano, S., Gianguzza, A., Piazzese, D.: Interactions of diethylenetriaminepentaacetic acid (dtpa) and triethylenetetraminehexaacetic acid (ttha) with major components of natural waters. Anal. Bioanal. Chem. 375, 956–967 (2003)

    Google Scholar 

  27. Schwarzenbach, G.: Die komplexometrische Titration. Ferdinand Enke, Stuttgart (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalia Maria Cigala.

Additional information

Previous contributions to this series: Refs. 8, 10 and 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cigala, R.M., Crea, F., De Stefano, C. et al. Modelling the Hydrolysis of Mixed Mono-, Di- and Trimethyltin(IV) Complexes in Aqueous Solutions. J Solution Chem 44, 1611–1625 (2015). https://doi.org/10.1007/s10953-015-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0367-4

Keywords

Navigation