Skip to main content
Log in

Determination of pK aIL Values of Three Chelating Extractants in ILs: Consequences for the Extraction of 4f Elements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous–ionic liquid biphasic systems have been examined in terms of water and acid solubilities in the IL-rich phase at ambient temperature. The biphasic mixtures were comprised of acids of various concentrations (H+; Cl, H+; \( {\text{NO}}_{3}^{ - } \), H+; \( {\text{ClO}}_{4}^{ - } \), mainly from 1 × 10−2 to 1 × 10−4 mol·dm−3) and four ionic liquids of the imidazolium family [C1C n im][Tf2N] (n = 4, 6, 8 and 10). The effects of ionic medium (μ = 0.1 mol·dm−3, by use of Na+; Cl, Na+; \( {\text{NO}}_{3}^{ - } \) or Na+; \( {\text{ClO}}_{4}^{ - } \), according to the acid investigated), the nature of the IL cation as well as the nature of the acid on the mutual solubilities of (H2O, H+, [C1C n im]+ and [Tf2N]) entities were determined. Then, three chelating compounds (HL), which belong to the β-diketone family (thenoyltrifluoroacetone (HTTA), 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HP) and 4-benzoyl-3-phenyl-5-isoxazolone (HPBI)), were added to [C1C4im][Tf2N] and subsequent determination of the H+ distribution between the two phases allowed the determination of their dissociation constants (pK aIL) in the water-saturated ionic liquid phase. A very strong effect of the IL cation on the HTTA pK aIL value was observed from n = 4 to n = 10. The influence of this phenomenon on the lanthanide extraction process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leo, A., Harnsch, C., Elkins, D.: Partition coefficients and their use. Chem. Rev. 71, 525–616 (1971)

    Article  CAS  Google Scholar 

  2. Grimes, T., Nash, K.: Acid dissociation constants and rare earth stability constants for DTPA. J. Solution Chem. 43, 298–313 (2014)

    Article  CAS  Google Scholar 

  3. Safavi, A., Abdollahi, H., Meleki, N., Zeinali, S.: Investigation of the role of ionic liquids in tuning the pK a values of some anionic indicators. J. Solution Chem. 38, 753–761 (2009)

    Article  CAS  Google Scholar 

  4. Binnemans, K.: Rare-earth β-diketonates. In: Gschneidner, K.A., Bünzli, J.C.G. (eds.) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam (2005)

    Google Scholar 

  5. Pettinari, C., Marchetti, F., Drozdov, A.: β-diketones and related ligands. In: McCleverty, J.A., Meyer, T.J. (eds.) Comprehensive coordination chemistry II, vol. 1. Elsevier, Amsterdam (2003)

    Google Scholar 

  6. Atanassova, M., Dukov, I.: A comparative study of the solvent extraction of trivalent elements of the lanthanide series with thenoyltrifluoroacetone and 4-benzoyl-3-methyl-1-phenyl-2pyrazolin-5-one using diphenylsulphoxide as synergistic agents. J. Solution Chem. 38, 289–301 (2009)

    Article  CAS  Google Scholar 

  7. Marchetti, F., Pettinari, C., Pettinari, R.: Acylpyrazolone ligands: synthesis, structures, metal coordination chemistry and applications. Coord. Chem. Rev. 249, 2909–2945 (2005)

    Article  CAS  Google Scholar 

  8. Atanassova, M., Lachkova, V.I., Vassilev, N.G., Varbanov, S.G., Dukov, I.: Complexation of trivalent lanthanide ions with 4-benzoyl-3-phenyl-5-isoxazolone and p-tert-butylcalix[4]arene fitted with phosphinol pendant arms in solution during synergistic solvent extraction and structural study of solid complexes by IR and NMR. Polyhedron 29, 655–663 (2010)

    Article  CAS  Google Scholar 

  9. Billard, I.: Ionic liquids: New hopes for efficient lanthanide/actinide extraction and separation? In: Bünzli, J.C.G., Percharsky, V.K. (eds.) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam (2013)

    Google Scholar 

  10. Garvey, S.L., Hawkins, C.A., Dietz, M.L.: Effect of aqueous phase anion on the mode of facilitated ion transfer into room-temperature ionic liquids. Talanta 95, 25–30 (2012)

    Article  CAS  Google Scholar 

  11. Jensen, M.P., Borkowski, M., Lazak, I., Beitz, J.V., Rickert, P.G., Dietz, M.L.: Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid. Sep. Sci. Technol. 47, 233–243 (2012)

    Article  CAS  Google Scholar 

  12. Mazan, V., Billard, I., Papaiconomou, N.: Experimental connections between aqueous aqueous and aqueous ionic liquid biphasic systems. RSC Adv. 4, 13371–13384 (2014)

    Article  CAS  Google Scholar 

  13. Rickert, P.G., Stepinski, D.C., Rausch, D.J., Bergeron, R.M., Jakab, S., Dietz, M.L.: Solute-induced dissolution of hydrophobic ionic liquids in water. Talanta 72, 315–320 (2007)

    Article  CAS  Google Scholar 

  14. Kidani, K., Imura, H.: Solvent effect of ionic liquids on the distribution constant of 2-thenoyltrifluoroacetone and its nickel(II) and copper(II) chelates and the evaluation of the solvent properties based on the regular solution theory. Talanta 83, 299–304 (2010)

    Article  CAS  Google Scholar 

  15. Bell, T.J., Ikeda, Y.: The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans. 40, 10125–10130 (2011)

    Article  CAS  Google Scholar 

  16. Billard, I., Georg, S.: Reactivity of the radiolysis products of the ionic liquid C4-mimTf2N and effect of water: a TRLFS preliminary study. Helv. Chim. Acta 92, 2227–2237 (2009)

    Article  CAS  Google Scholar 

  17. Chaumont, A., Wipff, G.: Solvation of uranyl and europium(III) cations and their chloro complexes in a room temperature ionic liquid. A theoretical study of the effect of solvent humidity. Inorg. Chem. 43, 5891–5901 (2004)

    Article  CAS  Google Scholar 

  18. Freire, M.G., Carvalho, P.J., Gardas, R.L., Marrucho, I.M., Santos, L.M.N.B.F., Coutinho, J.A.P.: Mutual solubilities of water and the [C n mim][Tf2N] hydrophobic ionic liquids. J. Phys. Chem. 112, 1604–1610 (2008)

    Article  CAS  Google Scholar 

  19. Freire, M.G., Santos, L.M.N.B.F., Fernandes, A.M., Coutinho, J.A.P., Marrucho, I.M.: An overview of the mutual solubilities of water–imidazolium based ionic liquids systems. Fluid Phase Equilib. 261, 449–454 (2007)

    Article  CAS  Google Scholar 

  20. Maia, F.M., Rodriguez, O., Macedo, E.A.: Relative hydrophobicity of equilibrium phases in biphasic systems (ionic liquid + water). J. Chem. Thermodyn. 48, 221–228 (2012)

    Article  CAS  Google Scholar 

  21. Rehac, K., Moravek, P., Strejc, M.: Determination of mutal solubilities of ionic liquid and water. Fluid Phase Equilib. 316, 17–25 (2012)

    Article  Google Scholar 

  22. Zafrani-Moattar, M.T., Hanzehzadeh, S.: Salting-out effect, preferential exclusion and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: effects of temperature, anions, cations. J. Chem. Eng. Data 55, 1598–1610 (2010)

    Article  Google Scholar 

  23. Jacquemin, J., Husson, P., Majer, V., Gomez, M.C.: Influence of the cation on the solubility of CO2 and H2 in ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion. J. Solution Chem. 36, 967–979 (2007)

    Article  CAS  Google Scholar 

  24. Genov, L., Dukov, I.: Extraction of strong single-base acids with trioctylamine. Monatsh. Chem. 103, 1552–1559 (1972)

    Article  CAS  Google Scholar 

  25. Genov, L., Dukov, I.: Influence of solvents in the extraction of mineral acids with amines. Monatsh. Chem. 106, 1053–1057 (1975)

    Article  CAS  Google Scholar 

  26. Babic, S., Horvat, A., Pavlovic, D., Kastelan-Macan, M.: Determination of pKa values of active pharmaceutical ingredients. Trends Anal. Chem. 26, 1043–1061 (2007)

    Article  CAS  Google Scholar 

  27. Szakacs, Z., Hägele, G.: Accurate determination of low pK values by 1H NMR titration. Talanta 62, 819–825 (2004)

    Article  CAS  Google Scholar 

  28. Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B.: Development of methods for the determination of pKa values. Anal. Chem. Insights 8, 53–71 (2013)

    Article  CAS  Google Scholar 

  29. De, A.K., Khopkar, S.M.: Analytical application of thenoyltrifluoroacetone. J. Sci. Ind. Des. 21A, 131–135 (1962)

  30. Umetani, S., Matsui, M.: Liquid–liquid distribution of 4-acyl-3-methyl-1-phenyl-5-pyrazolones and their zinc complexes. Bull. Chem. Soc. Jpn. 56, 3426–3429 (1983)

    Article  CAS  Google Scholar 

  31. Bouby, M., Billard, I., Duplâtre, G., Simonin, J.P., Bernard, O., Brunette, J.P., Goetz-Grandmont, G.: Determination of the thermodynamic acidity constant of 3-phenyl-4-benzoylisoxazol-5-one (HPBI) using the binding mean spherical approximation model. Phys. Chem. Chem. Phys. 1, 3765–3769 (1999)

    Article  CAS  Google Scholar 

  32. Gaillard, C., Mazan, V., Georg, S., Klimchuk, O., Sypula, M., Billard, I., Schurhammer, R., Wipff, G.: Acid extraction to a hydrophobic ionic liquid: the role of added tributylphosphate investigated by experiments and simulations. Phys. Chem. Chem. Phys. 14, 5187–5199 (2012)

    Article  CAS  Google Scholar 

  33. Billard, I., Ouadi, A., Jobin, E., Champion, J., Gaillard, C., Georg, S.: Understanding extraction mechanism in ionic liquids: \( {\text{UO}}_{2}^{{2 + }} \)/HNO3/TBP/C4-mimTf2N as a case study. Solv. Ext. Ion Exchange 29, 577–601 (2011)

    Article  CAS  Google Scholar 

  34. Zolotov, Y.A., Kuzmin, N.M.: Extraction of metals by acylpyrazolones. Nauka, Moscow (1977)

    Google Scholar 

  35. Atanassova, M., Kurteva, V., Lubenov, L., Varbanov, S., Dukov, I.: Behavior of mixed systems based on para-substituted 4-aroyl-5-pyrazolones in the presence of phosphorus containing calix[4]arene toward lanthanides: synergistic solvent extraction and separation. Sep. Pur. Technol. 95, 58–63 (2012)

    Article  CAS  Google Scholar 

  36. Huang, C.H.: Rare earth coordination chemistry. Fundamental and applications. Wiley, New York (2010)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to FP7-PEOPLE-Marie Curie Actions-IEF for the financial support of the project INNOVILLN (622906) 2014–2016. The authors would like also to acknowledge the contribution of the COST Action CM1206 (EXIL). I.B. is grateful to Guillaume Klein for valuable discussions on arctan function properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Billard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanassova, M., Billard, I. Determination of pK aIL Values of Three Chelating Extractants in ILs: Consequences for the Extraction of 4f Elements. J Solution Chem 44, 606–620 (2015). https://doi.org/10.1007/s10953-015-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0299-z

Keywords

Navigation