Skip to main content
Log in

Resonance frequency of an orthotropic layer to non-principal vertically incident SH body and surface waves

  • Research
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

In this study, non-principal waves propagating in an isotropic elastic half-space covered by an orthotropic layer are examined. The main objective is to establish a formula for the SH transfer function induced by an vertically incident SH wave and a formula for the H/V ratio of surface waves. The peak frequencies of both the SH transfer function and the H/V ratio curve are examined for models with low to high impedance contrasts to verify the applicability of the quarter wave-length rule for both SH body waves and surface waves. It is numerically shown that the quarter wave-length rule applies well for non-principal SH body wave. Non principal surface waves are shown to be a composition of Love and Rayleigh waves, and their peaks follow the quarter wave-length rule only in the case of high impedance contrast. For medium or low impedance contrasts, the peak frequencies of surface waves could differ from the peak frequencies of SH body wave with relative differences up to \(50\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seis Soc Am 95(5):1766–1778

    Article  Google Scholar 

  • Borcherdt RD (2009) Viscoelastic waves in layered media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of Love waves on microtremor H/V ratio. Bull Seismol Soc Am 98(1):288–300

    Article  Google Scholar 

  • Cerv J, Plesek J (2013) Implicit and explicit secular equations for Rayleigh waves in two-dimentional anisotropic media. Wave Motion 50:1105–1117

    Article  Google Scholar 

  • Chenevert ME, Gatlin C (1965) Mechanical anisotropies of laminated sedimentary rocks. Soc Pet Eng J 5(01):67–77

    Article  Google Scholar 

  • Dung TTT, Tuan TT, Vinh PC, Trung GK (2020) An approximate formula of first peak frequency of ellipticity of Rayleigh surface waves in an orthotropic layered half-space model. J Mech Mater Struct 15(1):61–74

    Article  Google Scholar 

  • Ekström G, Dziewonski AM (1998) The unique anisotropy of the Pacific upper mantle. Nature 394(6689):168–172

  • Field E, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20(24):2925–2928

    Article  Google Scholar 

  • Forsyth DW (1975) The early structural evolution and anisotropy of the oceanic upper mantle. Geophys J Int 43(1):103–162

  • Franquet JA, Rodriguez EF (2012, June) Orthotropic horizontal stress characterization from logging and core derived acoustic anisotropies. In 46th US Rock Mechanics/Geomechanics Symposium. OnePetro

  • Frazer RA, Duncan WJ, Collar AR (1938) Elementary matrices and some applications to dynamics and differential equations. Cambridge University Press

    Book  Google Scholar 

  • Gupta S, Majhi DK, Kundu S, Vishwakarma SK (2013) Propagation of Love waves in non-homogeneous substratum over initially stressed heterogeneous half-space. Appl Math Mech 34(2):249–258

    Article  Google Scholar 

  • Gupta S, Ahmed M (2017) Shear waves in an inhomogeneous viscoelastic layer resting over a prestressed orthotropic substrate. Int J Geomech 6:04016145

    Article  Google Scholar 

  • Gupta S, Ahmed M (2017) On Propagation of Love waves in dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space. Earthq Struct 12(6):619–628

    Google Scholar 

  • Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. Mir publishers, Moscow

    Google Scholar 

  • Lermo J, Chávez-García FJ (1994) Are microtremors useful in site response evaluation? Bull Seis Soc Am 84(5):1350–1364

    Google Scholar 

  • Lermo J, Chávez-García FJ (1994) Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records. Soil Dyn Earthq Eng 13(6):413–423

    Article  Google Scholar 

  • Malischewsky PG, Scherbaum F, Lomnitz C, Tuan TT, Wuttke F, Shamir G (2008) The domain of existence of prograde Rayleigh-wave particle motion for simple models. Wave Motion 45(4):556–564

    Article  Google Scholar 

  • Molnar S, Sirohey A, Assaf J, Bard PY et al (2022) A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. J Seismol:1-33

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI, Railway Technical Research Institute(RTRI) 30(1):25-33

  • Nakamura Y (2000) Clear identification of fundamental idea of Nakamuras technique and its applications. 12WCEE Vol. 2656

  • Nishimura CE, Forsyth DW (1989) The anisotropic structure of the upper mantle in the Pacific. Geophys J Int 96(2):203–229

    Article  Google Scholar 

  • Ohyoshi T (2000) The propagation of Rayleigh waves along an obliquely cut surface in a directional fibre-reinforced composite. Compos Sci Technol 60:2191–2196

    Article  Google Scholar 

  • Sayers CM, Van Munster JG (1991) Microcrack-induced seismic anisotropy of sedimentary rocks. J Geophys Res Solid 96(B10):16529–16533

    Article  Google Scholar 

  • Singh B, Kumar A, Singh J (2006) Reflection of generalized thermoelastic waves from a solid half-space under hydrostatic initial stress. Appl Math Comput 177(1):170–177

    Google Scholar 

  • Stroh AN (1962) Steady state problems in anisotropic elasticity. Stud Appl Math 41(1–4):77–103

    Google Scholar 

  • Tanuma K (2007) Stroh formalism and Rayleigh waves. In Stroh Formalism and Rayleigh Waves (pp. 5-154). Springer, Dordrecht

  • Togashi Y, Kikumoto M, Tani K, Hosoda K, Ogawa K (2021) Determination of 12 orthotropic elastic constants for rocks. Int J Rock Mech Min Sci 147:104889

    Article  Google Scholar 

  • Tuan TT, Scherbaum F, Malischewsky PG (2011) On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models. Geophys J Int 184(2):793–800

    Article  Google Scholar 

  • Tuan TT, Vinh PC, Ohrnberger M, Malischewsky P, Aoudia A (2016) An improved formula of fundamental resonance frequency of a layered half-space model used in H/V ratio technique. Pure Appl Geophys 173(8):2803–2812

    Article  Google Scholar 

  • Tuan TT, Vinh PC, Malischewsky P, Aoudia A (2016) Approximate formula of peak frequency of H/V ratio curve in multilayered model and its use in H/V ratio technique. Pure Appl Geophys 173(2):487–498

    Article  Google Scholar 

  • Tuan TT, Vinh PC, Aoudia A, Dung TTT, Manu-Marfo D (2019) Approximate analytical expressions of the fundamental peak frequency and the amplification factor of S-wave transfer function in a viscoelastic layered model. Pure Appl Geophys 176(4):1433–1443

    Article  Google Scholar 

  • Vinh PC, Linh NTK (2012) Explicit secular equations and formulas for the velocity of Rayleigh waves in a directional fiber-reinforced composite. ECCM15 - 15th European conference on composite materials, Venice, Italy, 24-28 June 2012

  • Vinh PC, Tuan TT, Capistran MA (2015) Explicit formulas for the reflection and transmission coefficients of one-component waves through a stack of an arbitrary number of layers. Wave Motion 54:134-144

    Article  Google Scholar 

  • Vinh PC, Anh VTN, Linh NTK (2016) On a technique for deriving the explicit secular equation of Rayleigh waves in an orthotropic half-space coated by an orthotropic layer. Waves Random Complex Media 26:176–188

    Article  Google Scholar 

  • Vinh PC, Tuan TT, Hue LT, Anh VTN, Dung TTT, Linh NTK, Malischewsky P (2019) Exact formula for the horizontal-to-vertical displacement ratio of Rayleigh waves in layered orthotropic half-spaces. J. Acoust Soc Am 146(2):1279–1289

    Article  Google Scholar 

  • Zheng T, Dravinski M (1998) Amplification of SH waves by an orthotropic basin. Earthq Eng Struct Dyn 27(3):243-257

    Article  Google Scholar 

  • Zheng T, Dravinski M (1999) Amplification of waves by an orthotropic basin: sagittal plane motion. Earthq Eng Struct Dyn 28(6):565–584

    Article  Google Scholar 

Download references

Funding

This research is funded by the University of Science, Vietnam National University, Hanoi under project number TN.21.03.

Author information

Authors and Affiliations

Authors

Contributions

TTTD, TTT, and PCV established equations in the manuscript. TTTD and TTT carried out the numerical calculation. TTTD, TTT, and AA wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Truong Thi Thuy Dung.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A. The elements of matrix Q

The element of matrix \(\textbf{Q}\) in (6) are:

$$\begin{aligned} Q_{11}= & {} c_{11} \cos ^4 \theta +\dfrac{1}{2} (c_{13} + 2 c_{55}) \sin ^2 (2 \theta ) \nonumber \\{} & {} + c_{33} \sin ^4 \theta , \nonumber \\ Q_{22}= & {} c_{22}, \nonumber \\ Q_{33}= & {} c_{33} \cos ^4 \theta +\dfrac{1}{2} (c_{13} + 2 c_{55}) \sin ^2 (2 \theta ) \nonumber \\{} & {} + c_{11} \sin ^4 \theta , \nonumber \\ Q_{44}= & {} c_{44} \cos ^2\theta + c_{66} \sin ^2\theta , \nonumber \\ Q_{55}= & {} \dfrac{1}{8} [c_{11}-2 c_{13}+c_{33}+4c_{55}\nonumber \\{} & {} -\left( c_{11}-2 c_{13}+c_{33}-4c_{55}\right) \cos (4 \theta ) ] ,\nonumber \\ Q_{66}= & {} c_{66} \cos ^2\theta + c_{44} \sin ^2\theta , \nonumber \\ Q_{12}= & {} c_{12} \cos ^2 \theta + c_{23} \sin ^2 \theta , \nonumber \\ Q_{13}= & {} \dfrac{1}{8} [c_{11}+6 c_{13}+c_{33}-4c_{55}\nonumber \\{} & {} -\left( c_{11}-2 c_{13}+c_{33}-4c_{55}\right) \cos (4 \theta ) ], \nonumber \\ Q_{15}= & {} -\dfrac{1}{4}[c_{11} - c_{33} \nonumber \\{} & {} + (c_{11} - 2 c_{13} + c_{33} - 4 c_{55}) \cos (2 \theta )]\sin (2 \theta ), \nonumber \\ Q_{23}= & {} c_{23} \cos ^2 \theta + c_{12} \sin ^2 \theta ,\nonumber \\ Q_{25}= & {} (-c_{12} + c_{23}) \cos \theta \sin \theta , \nonumber \\ Q_{35}= & {} \dfrac{1}{4}[-c_{11} + c_{33}\nonumber \\{} & {} + (c_{11} - 2 c_{13} + c_{33} - 4 c_{55}) \cos (2 \theta )]\sin (2 \theta ), \nonumber \\ Q_{46}= & {} (c_{44} - c_{66} ) \cos \theta \sin \theta . \end{aligned}$$
(A.1)

1.2 Appendix B. The elements of matrix S

The block matrices in equation (52) are

$$\begin{aligned} \textbf{S}_1= & {} \dfrac{1}{\alpha _1-\alpha _2}\nonumber \\{} & {} \times \left[ {\begin{array}{*{20}{c}} \alpha _1\cos (\varepsilon _1)-\alpha _2\cos (\varepsilon _2)&{}\alpha _1\alpha _2[-\cos (\varepsilon _1)+\cos (\varepsilon _2)]\\ \cos (\varepsilon _1)-\cos (\varepsilon _2)&{}-\alpha _2\cos (\varepsilon _1)+\alpha _1\cos (\varepsilon _2) \end{array}} \right] \nonumber \\ \end{aligned}$$
(B.1)
$$\begin{aligned} \textbf{S}_2= & {} \dfrac{i}{(\alpha _1\gamma _2-\alpha _2\gamma _1)I_L^{\pi /2}I_L^0}\nonumber \\{} & {} \times \left[ {\begin{array}{*{20}{c}} -\alpha _1\gamma _2I_L^0\sin (\varepsilon _1)+\alpha _2\gamma _1I_L^{\pi /2}\sin (\varepsilon _2)&{}\alpha _1\alpha _2[I_L^0\sin (\varepsilon _1)-I_L^{\pi /2}\sin (\varepsilon _2)]\\ -\gamma _2I_L^0\sin (\varepsilon _1)+\gamma _1I_L^{\pi /2}\sin (\varepsilon _2)&{}\alpha _2I_L^0\sin (\varepsilon _1)-\alpha _1I_L^{\pi /2}\sin (\varepsilon _2) \end{array}} \right] \nonumber \\ \end{aligned}$$
(B.2)
$$\begin{aligned} \textbf{S}_3= & {} \dfrac{i}{\alpha _1-\alpha _2}\nonumber \\{} & {} \times \left[ {\begin{array}{*{20}{c}} -\alpha _1I_L^{\pi /2}\sin (\varepsilon _1)+\alpha _2I_L^0\sin (\varepsilon _2)&{}\alpha _1\alpha _2[I_L^{\pi /2}\sin (\varepsilon _1)-I_L^0\sin (\varepsilon _2)]\\ -\gamma _1I_L^{\pi /2}\sin (\varepsilon _1)+\gamma _2I_L^0\sin (\varepsilon _2)&{}\alpha _2\gamma _1I_L^{\pi /2}\sin (\varepsilon _1)-\alpha _1\gamma _2I_L^0\sin (\varepsilon _2) \end{array}} \right] \nonumber \\ \end{aligned}$$
(B.3)
$$\begin{aligned} \textbf{S}_4= & {} \dfrac{1}{\alpha _1\gamma _2-\alpha _2\gamma _1}\nonumber \\{} & {} \times \left[ {\begin{array}{*{20}{c}} \alpha _1\gamma _2\cos (\varepsilon _1)-\alpha _2\gamma _1\cos (\varepsilon _2)&{}\alpha _1\alpha _2[\cos (\varepsilon _1)-\cos (\varepsilon _2)]\\ \gamma _1\gamma _2[\cos (\varepsilon _1)-\cos (\varepsilon _2)]&{}-\alpha _2\gamma _1\cos (\varepsilon _1)+\alpha _1\gamma _2\cos (\varepsilon _2) \end{array}} \right] \nonumber \\ \end{aligned}$$
(B.4)

where \(\varepsilon _1=k_1h\) and \(\varepsilon _2=k_2h\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, T.T.T., Vinh, P.C., Aoudia, A. et al. Resonance frequency of an orthotropic layer to non-principal vertically incident SH body and surface waves. J Seismol 27, 789–804 (2023). https://doi.org/10.1007/s10950-023-10152-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-023-10152-w

Keywords

Navigation