Skip to main content
Log in

Magnetic Properties and Electric Hysteresis in SrFe12O19 Hexaferrites at Low Sintered Temperatures

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Remarkable electrical properties in the hard magnetic materials M hexaferrites have been reported in recent years. To evidence these properties, synthesis processes involving heat treatments at high temperatures (1300 °C) in an oxygen atmosphere have usually been necessary. In this work, using the chemical coprecipitation route, SrFe12O19 hexaferrite powders were synthesized with different Sr/Fe stoichiometric ratios (1/12, 1/11, 1/10.8). These powders were thermally treated between 830 and 1005 °C in air. In correspondence with the nanometric particle sizes of the synthesized powders, high values of saturation magnetization, Ms (~ 72 emu g−1), and a maximum coercive field, iHc of 5.9 kOe, were obtained for SrM 1/10.8. The samples with a ratio of 1/10.8 treated at 1005 °C for 2 h in air did not reveal spurious phases, so electrical loops at low fields were performed, which showed an incipient electrical ordering. To favor this aspect, the powders were reheated at 1100 °C for 2 h in air. The polarization vs electrical field curves showed remanent polarization and coercivity values comparable to those previously reported for heat treatments at more elevated temperatures in the presence of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adelskold V.: X-ray studies on magneto-plumbite, Pb0.6Fe2O3 and other substances resembling “beta-alumina”, Na2O11Al2O3. Ed. Almqvist & Wiksell Friedländer usw Stockholm Berlin (1938)

  2. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Mater. Sci. (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  3. Goto, Y., Higashimoto, M., Takahashi, K.: Preparation and characterization of polycrystalline SrFe18O27. Jpn. J. Appl. Phys. (1973). https://doi.org/10.1143/JJAP.12.945

    Article  Google Scholar 

  4. Ahmad, M., Aen, F., Islam, M.U., Niazi, S.B., Rana, M.U.: Structural, electrical, and microstructure properties of nanostructured calcium doped Ba-hexaferrites synthesized by sol-gel method. Ceram. Int. (2011). https://doi.org/10.1007/s10948-013-2167-7

    Article  Google Scholar 

  5. Joshi, R., Singh, C., Kaur, D., Zaki, H., Bindra Narang, S., Jotania, R., Ghimire, M.S.: Structural and magnetic properties of Co2+ - W 4+ ions doped M-type Ba-Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.10.192

    Article  Google Scholar 

  6. Wang, X., Li, L., Su, S., Yue, Z.: Electromagnetic properties of low-temperature-sintered Ba3Co2−xZnxFe24O41 ferrites prepared by solid state reaction method. J. Magn. Magn. Mater. (2004). https://doi.org/10.1016/j.jmmm.2004.02.016

    Article  Google Scholar 

  7. Singh, J., Singh, C., Kaur, D., Narang, S.B., Jotania, R., Joshi, R.: Investigation on structural and microwave absorption property of Co2+ and Y 3+ substituted M-type Ba-Sr hexagonal ferrites prepared by a ceramic method. J. Alloys Compd. 695 (2017). https://doi.org/10.1016/j.jallcom.2016.09.251

  8. Singh, C., Narang, S.B., Hudiara, I.S., Bai, Y., Tabatabaei, F.: Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. (2008). https://doi.org/10.1016/j.materresbull.2007.06.050

    Article  Google Scholar 

  9. Han, M., Ou, Y., Chen, W., Deng, L.: Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol-gel method with and without polyethylene glycol added. J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.06.047

    Article  Google Scholar 

  10. Liu, X., Zhong, W., Yang, S., Yu, Z., Gu, B., Du, Y.: Structure and magnetic properties of La3+-substituted strontium hexaferrite particles prepared by sol-gel method. Phys. Stat. Sol. (a) (2002). https://doi.org/10.1002/1521-396X(200209)193:2%3c314::AID-PSSA314%3e3.0.CO;2-W

    Article  Google Scholar 

  11. Shirsath, S.E., Wang, D., Jadhav, S.S., Mane, M.L., Li, S.: Ferrites obtained by sol-gel method. In: L. Klein, M. Aparicio, A. Jitianue (Eds), Handbook of sol-gel science and technology, Springer, Heidelberg (2018)

  12. Mallick, K.K., Shepherd, P., Green, R.J.: Dielectric properties of M-type barium hexaferrite prepared by co-precipitation. J. Europ. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.098

    Article  Google Scholar 

  13. Alam, R.S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. (2015). https://doi.org/10.1016/j.jmmm.2014.12.059

    Article  Google Scholar 

  14. Janasi, S.R., Emura, M., Landgraf, F.J.G., Rodrigues, D.: The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders. J. Magn. Magn. Mater. (2002). https://doi.org/10.1016/S0304-8853(01)00857-5

    Article  Google Scholar 

  15. Haneda K., Miyakawa C., Kojima H.: Preparation of high-coercivity BaFe12O19. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1151-2916.1974.tb10921.x

  16. Alam, R.S., Moradi, M., Nikmanesh, H., Ventura, J., Rostami, M.: Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12−4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  Google Scholar 

  17. Liu, X., Zhong, W., Yang, S., Yu, Z., Gu, B., Du, Y.: Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J. Magn. Magn. Mater. (2002). https://doi.org/10.1016/S0304-8853(01)00914-3

    Article  Google Scholar 

  18. Soman, V.V., Nanoti, V.M., Kulkarni, D.K.: Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.12.089

    Article  Google Scholar 

  19. Lei, C., Tang, S., Du, Y.: Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.06.204

    Article  Google Scholar 

  20. Sharma, P., Verma, A., Sidhu, R.K., Pandey, O.P.: Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets. J. Alloys Compd. (2003). https://doi.org/10.1016/S0925-8388(03)00390-6

    Article  Google Scholar 

  21. Trukhanov S.V., Trukhanov A.V., Turchenko V.A., Trukhanov An.V., Trukhanova E.L., Tishkevich D.I., Ivanov V.M., Zubar T.I., Salem M., Kostishyn V.G., Panina L.V., Vinnik D.A., Gudkova S.A.: Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.09.172

  22. Spaldin, N.A., Cheong, S.W., Ramesh, R.: Multiferroics: past, present, and future. Phys. Today (2010). https://doi.org/10.1063/1.3502547

    Article  Google Scholar 

  23. Andrew, J.S., Starr, J.D., Budi, M.A.K.: Prospects for nanostructured multiferroic composite materials. Scr. Mater. (2014). https://doi.org/10.1016/j.scriptamat.2013.09.023

    Article  Google Scholar 

  24. Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C, Jian, L., Salahuddin, S., Ralph, D.C., Schlom, D.G., Íñiguez, J., Huey, B.D., Ramesh R.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature (2014). https://doi.org/10.1038/nature14004

  25. Díaz-Castañón, S., García-Zaldívar, O., Faloh-Gandarilla, J., Watts, B.E., Calderón-Piñar, F., Hernández-Landaverde, M.A., Espinoza-Beltran, F.J.: Synthesis of powders and thin films of bismuth ferrite from solution: a magneto-electric study. Appl. Phys. A (2014). https://doi.org/10.1007/s00339-014-8523-z

    Article  Google Scholar 

  26. Agarwal, A., Aghamkar, P., Lal, B.: Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol-gel method. J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2016.09.103

    Article  Google Scholar 

  27. Pahuja, P., Kotnala, R.K., Tandon, R.P.: Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.07.204

    Article  Google Scholar 

  28. Ashiq, M.N., Qureshi, R.B., Malana, M.A., Ehsan, M.F.: Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J. Alloys Compd. (2014). https://doi.org/10.1016/J.JALLCOM.2014.08.015

    Article  Google Scholar 

  29. Tan, G., Chen, X.: Synthesis, structures, and multiferroic properties of strontium hexaferrite ceramics. J. Electron. Mater. (2013). https://doi.org/10.1007/s11664-012-2426-6

    Article  Google Scholar 

  30. Tan, G.L., Li, W.: Ferroelectricity and ferromagnetism of M-type lead hexaferrite. J. Am. Ceram. Soc. (2015). https://doi.org/10.1111/jace.13530

    Article  Google Scholar 

  31. Tan, G., Chen, X.: Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. (2013). https://doi.org/10.1016/j.jmmm.2012.09.047

    Article  Google Scholar 

  32. Tan, G.L., Wang, M.: Multiferroic PbFe12O19 Ceramics. J. Electroceramics (2011). https://doi.org/10.1007/s10832-011-9641-z

    Article  Google Scholar 

  33. Kostishin, V.G., Panina, L.V., Kozhitov, L.V., Timofeev, A.V., Zuzin, A.K., Kovalev, A.N.: Synthesis and multiferroic properties of M-type hexagonal SrFe12O19 ferrite ceramic. J. Surf. Investig. (2015). https://doi.org/10.1134/S1027451015060129

    Article  Google Scholar 

  34. Trukhanov, A.V., Trukhanov, S.V., Kostishin, V.G., Panina, L.V., Salem, M.M., Kazakevich, I.S., Krivchenya, D.A.: Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Physics of the Solid State. https://doi.org/10.1134/S1063783417040308

  35. Turchenko, V., Trukhanov, A., Trukhanov, S., Balasoiu, M., Lupu, N.: Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2018.12.101

    Article  Google Scholar 

  36. Trukhanov, A.V., Panina, L.V., Trukhanov, S.V., Kostishyn, V.G., Turchenko, V.A., Vinnik, D.A., Zubar, T.I., Yakovenko, E.S., Yu, L., Macuy Trukhanova E.L.: Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.04.183

  37. Trukhanov, A.V., Kostishyn, V.G., Panina, L.V., Korovushkin, V.V., Turchenko, V.A., Thakur, P., Thakur, A., Yang, Y., Vinnik, D.A., Yakovenko, E.S., Yu, L., Matzui Trukhanova E.L., Trukhanov, S.V.: Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.04.150

  38. International Center for Diffraction Data (ICDD), card number 00-033-1340

  39. Jin, L., Li, F., Zhang, S.: Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. (2014). https://doi.org/10.1111/jace.12773

    Article  Google Scholar 

  40. Yan, H., Inam, F., Viola, G., Ning, H., Zhang, H., Jiang, Q., Reece, M.J.: The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J. Adv. Dielectr. (2011). https://doi.org/10.1142/S2010135X11000148

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Laboratory for Nanotechnology Research (LINAN-IPICYT) for the VSM, X-ray diffraction and Scanning Electron Microscopy measurements. In particular, to Dr. Gladis Labrada and the M.Sc. Beatriz Rivera for his technical assistance. The evaluation of electrical hysteresis was carried out thanks to the CONACYT research project INFRA-2017-01-282193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Díaz-Castañón.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-López, F.J., Díaz-Castañón, S. Magnetic Properties and Electric Hysteresis in SrFe12O19 Hexaferrites at Low Sintered Temperatures. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06724-7

Keywords

Navigation