Skip to main content
Log in

Probing the Difference Between Amorphous and Granular Superconducting Nanowires in Transport Measurements

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Superconducting non-granular quasi-one-dimensional (1D) NbN nanowires and relatively wide granular wires of the same material exhibit similar magneto-transport behavior arising from different physical origin. Both types of wires exhibit a broad transition into the superconducting state with non-vanishing resistance well below Tc, and negative magnetoresistance (nMR) decreasing in magnitude with temperature. A distinct behavior between the two wires is revealed in their response to increasing current. In V-I measurements, the 1D wires exhibit finite initial slope, i.e., zero critical current, at all temperatures below the transition, while the granular wires exhibit a nonzero critical current that depends on temperature. Also, the two wires differ from each other in the current dependence of the nMR. In the 1D wires, at low temperature, the nMR decreases monotonically with the current, while in the granular wires the nMR initially increases with the current. The different current response of the two types of wires indicates the different physical origin of their behavior: That of the 1D wires is attributed to fluctuations of the order parameter, while that of the granular wires reflects the response of an inhomogeneous chain of Josephson junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164(2), 498–510 (1967). https://doi.org/10.1103/PhysRev.164.498

    Article  ADS  Google Scholar 

  2. McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1(3), 1054–1070 (1970). https://doi.org/10.1103/PhysRevB.1.1054

    Article  ADS  Google Scholar 

  3. Giordano, N.: Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61(18), 2137–2140 (1988). https://doi.org/10.1103/PhysRevLett.61.2137

    Article  ADS  Google Scholar 

  4. Xiong, P., Herzog, A.V., Dynes, R.C.: Negative magnetoresistance in homogeneous amorphous superconducting Pb wires. Phys. Rev. Lett. 78(5), 927–930 (1997). https://doi.org/10.1103/PhysRevLett.78.927

    Article  ADS  Google Scholar 

  5. Lau, C.N., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M.: Quantum phase slips in superconducting nanowires. Phys Rev Lett 87(21), 217003–217004 (2001). https://doi.org/10.1103/PhysRevLett.87.217003

    Article  ADS  Google Scholar 

  6. Tian, M., et al.: Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys Rev B Condens Matter Mater Phys 71(10),(2005). https://doi.org/10.1103/PhysRevB.71.104521

  7. Duan, J.-M.: Quantum Decay of One-Dimensional Supercurrent: Role of Electromagnetic Field. (1995)

  8. Voss, J.N., et al.: Eliminating quantum phase slips in superconducting nanowires. ACS Nano 15(3), 4108–4114 (2021). https://doi.org/10.1021/acsnano.0c08721

    Article  Google Scholar 

  9. Tian, M., Kumar, N., Chan, M.H.W., Mallouk, T.E.: Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition. Phys Rev B Condens Matter Mater Phys 78(4),(2008). https://doi.org/10.1103/PhysRevB.78.045417

  10. Cirillo, C., et al.: Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates. Appl Phys Lett 101(17),(2012). https://doi.org/10.1063/1.4764066

  11. Trezza, M., Cirillo, C., Sabatino, P., Carapella, G., Prischepa, S.L., Attanasio, C.: Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks. Appl Phys Lett 103(25),(2013). https://doi.org/10.1063/1.4851240

  12. Levi, D., Shaulov, A., Koren, G., Yeshurun, Y.: Magnetoresistance anomalies in ultra-thin granular YBa2Cu 3O7-δ bridges. Physica C: Superconductivity and its Applications 495, 39–43 (2013). https://doi.org/10.1016/j.physc.2013.07.012

    Article  ADS  Google Scholar 

  13. Shapiro, B.Y., Shapiro, I., Levi, D., Shaulov, A., Yeshurun, Y.: Negative magnetoresistance slope in superconducting granular films. Physica C: Superconductivity and its Applications 501, 51–54 (2014). https://doi.org/10.1016/j.physc.2014.04.001

    Article  ADS  Google Scholar 

  14. Levi, D., Shaulov, A., Frydman, A., Koren, G., Shapiro, B.Y., Yeshurun, Y.: Periodic negative magnetoresistance in granular YBa2Cu 3O7-δ nanowires. Epl 101(6),(2013). https://doi.org/10.1209/0295-5075/101/67005

  15. Arutyunov, K.Y., Golubev, D.S., Zaikin, A.D.: Superconductivity in one dimension. Phys. Rep. 464(1–2), 1–70 (2008). https://doi.org/10.1016/j.physrep.2008.04.009

    Article  ADS  Google Scholar 

  16. Tian, M., Kumar, N., Xu, S., Wang, J., Kurtz, J.S., Chan, M.H.W.: Suppression of superconductivity in zinc nanowires by bulk superconductors. Phys. Rev. Lett. 95(7), 4–7 (2005). https://doi.org/10.1103/PhysRevLett.95.076802

    Article  Google Scholar 

  17. Patel, U., et al.: Magnetoresistance oscillations in superconducting granular niobium nitride nanowires. Phys Rev B Condens Matter Mater Phys 80(1),(2009). https://doi.org/10.1103/PhysRevB.80.012504

  18. Shani, L., et al.: DNA origami based superconducting nanowires. AIP Adv 11(1),(2021). https://doi.org/10.1063/5.0029781

  19. Sofer, Z., Shaulov, A., Yeshurun, Y.: Current dependence of the negative magnetoresistance in superconducting NbN nanowires. Sci. Rep. 12(1), 22027 (2022). https://doi.org/10.1038/s41598-022-26475-6

    Article  ADS  Google Scholar 

  20. Lehtinen, J.S., Kemppinen, A., Mykkänen, E., Prunnila, M., Manninen, A.J.: Superconducting MoSi nanowires. Supercond Sci Technol 31(1),(2018). https://doi.org/10.1088/1361-6668/aa954b

  21. Baumans, X.D.A., et al.: Thermal and quantum depletion of superconductivity in narrow junctions created by controlled electromigration. Nat. Commun. 7, 3–10 (2016). https://doi.org/10.1038/ncomms10560

    Article  Google Scholar 

  22. Masuda, K., et al.: Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes. Appl Phys Lett 108(22),(2016). https://doi.org/10.1063/1.4952721

  23. Zgirski, M., Riikonen, K.P., Touboltsev, V., Arutyunov, K.Y.: Quantum fluctuations in ultranarrow superconducting aluminum nanowires. Phys Rev B Condens Matter Mater Phys 77(5), 1–6 (2008). https://doi.org/10.1103/PhysRevB.77.054508

    Article  Google Scholar 

  24. Arutyunov, K.Y.: Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state. Physica C: Superconductivity and its Applications 468(4), 272–275 (2008). https://doi.org/10.1016/j.physc.2007.08.027

    Article  ADS  Google Scholar 

  25. Tinkham, M.: Introduction to Superconductivity, 2nd edn., no. 207. Dover Publications. (2004)

  26. Newbower, R.S., Beasley, M.R., Tinkham, M.: Fluctuation effects on the superconducting transition of tin whisker crystals. Phys. Rev. B 5(3), 864–868 (1972). https://doi.org/10.1103/PhysRevB.5.864

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Gili Cohen-Taguri in GIXRD measurements. Thanks are also extended to Avital Fried and Lidor Geri for help in fabricating the NbN films.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the concept and designed the experiment, analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Zoharchen Sofer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofer, Z., Shaulov, A., Sharoni, A. et al. Probing the Difference Between Amorphous and Granular Superconducting Nanowires in Transport Measurements. J Supercond Nov Magn 37, 729–735 (2024). https://doi.org/10.1007/s10948-024-06719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06719-4

Keywords

Navigation