Skip to main content
Log in

Study on Multiferroic Properties of (0.5) Bi0.5Na0.5TiO3-(0.5) LaFeO3 Particulate Composite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline [(0.5) Bi0.5Na0.5TiO3-(0.5) LaFeO3] multiferroic composite is prepared by using the solid-state reaction method. The crystal structure of both phases is characterized by using the X-ray diffraction method (XRD) and confirms the presence of rhombohedral (i.e., bismuth sodium titanate) and orthorhombic (i.e., lanthanum ferrite) phases in the composite. The microstructure of the composite is analyzed using field emission scanning electron microscopy (FESEM). The crystal structure is further studied with Raman spectroscopy. The present composite exhibits ferroelectric and ferrimagnetic-like properties, revealing its multiferroic behavior. Furthermore, the impedance analysis of the composite shows the negative temperature coefficient of resistance behavior. The present study describes the structural and physical properties of the possible lead-free multiferroic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data can available as per the request from the reader.

References

  1. Das, B.C., Das, H., Mati, M.A., Akther Hossain, A.K.M.: Rietveld refiement analysis and inflence of individual phases on themagnetoelectrically coupled (1-x)BSZT+xNCZGF multiferroic composites. J. Alloys Compd. 881, 160632 (2021)

    Article  CAS  Google Scholar 

  2. Nan, C., Bichurin, M.I., Dongb, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  3. Schmid, H.: Magnetoelectric interaction phenomena in crystals, Proceedings of the MEIPIC-2. Ferroelectrics 161–162 (1994)

  4. Bichurin, M., Petrov, V., Priya, S., Bhalla, A.: Multiferroic magnetoelectric composites and their applications. Adv. Condens. Matter Phys. Article ID 129794, 3 (2012)

  5. Pahuja, P., Tandon, R.P.: Latest advancement in magnetoelectric multiferroic composites. Ferroelectrics 569(1), 108–121 (2020)

    Article  CAS  ADS  Google Scholar 

  6. Manzoor, S., Husain, S., Somvanshi, A., Fatema, M.: Structural, thermal, dielectric and multiferroic investigationson LaFeO3 composite systems. J. Mater. Sci. Mater. Electron. 31, 7811–7830 (2020)

    Article  CAS  Google Scholar 

  7. Kundu, S.K., Rana, D.K., Banerjee, A., Das, D., Basu, S.: Influence of manganese on multiferroic and electrical properties of lanthanum ferrite nanoparticles. Mater. Res. Express 6, 2053 (2019)

    Article  Google Scholar 

  8. Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., Chakrabarti, P.K.: Multiferroic behavior of lanthanum orthoferrite (LaFeO3). Mater. Lett. 64, 415–418 (2010)

    Article  CAS  Google Scholar 

  9. Sahoo, S., Das, S., Mahapatra, P.K., Choudhary, R.N.P.: Fabrication and characterization of LaFeO3 -BaTiO3 electroceramics. Mater. Chem. Phys. 216, 158–169 (2018)

    Article  CAS  Google Scholar 

  10. Gaikwad, V.M., Acharya, S.A.: Novel perovskite–spinel composite approach to enhance the magnetization of LaFeO3. RSC Adv. 5, 14366 (2015)

    Article  CAS  ADS  Google Scholar 

  11. Sharma, V., Singh, A., Singh, L., Singh, M., Mishra, S.K.: Compositional-driven multiferroic properties in samarium substituted LaFeO3-PbTiO3 solid solutions. Int. J. Appl. Ceram. Technol. 1–9 (2016)

  12. Wang, Y., Hu, J., Lin, Y., Nan, C.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater 2(2), 61–68 (2010)

    Article  Google Scholar 

  13. Nath, D., Mandal, S.K., Nath, A.: Magnetic field and temperature effect on physical properties of LaFeO3–Pb(Zr0.58Ti0.42)O3 multiferroic nanocomposite. Ferroelectric 550, 1 (2019)

    Article  Google Scholar 

  14. Xue, F., Tian, Y., Jian, G., Li, W., Tang, L., Guo, P.: Ferroelectromagnetic pseudocubic BiFeO3-LaFeO3-PbFeO2.5: Leakage current, dielectric, and multiferroic properties at room temperature. Ceram. Int. 46(1), 930–936 (2020)

    Article  Google Scholar 

  15. Rai, A., Thakur, A.K.: Tunability of dielectric, optical and magnetic property by simultaneous cosubstitution in LaFeO3. Mater. Sci. Eng. B 224, 139–149 (2017)

    Article  CAS  Google Scholar 

  16. Pradhan, L.K., Pandey, R., Kumar, R., Supriya, S., Kar, M.: Octahedral distortion due to oxygen vacancy reduction in La3+ modified BNT-BTO solid solutions near morphotropic phase boundary. J. Phys. D Appl. Phys. 51, 375301 (2018)

    Article  Google Scholar 

  17. Jiang, B., et al.: Iron– oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation. J. Mater. Chem. A 9, 13008 (2021)

    Article  CAS  Google Scholar 

  18. Saafan, S.A., Assar, S.T.: Dielectric behavior of nano-structured and bulk Li Ni Zn ferrite samples. J. Magn. Magn. Mater. 324, 2989–3001 (2012)

    Article  CAS  ADS  Google Scholar 

  19. Liu, X., Zhao, Y., Shi, J., Du, H., Xu, X., Lu, H., Che, J., Li, X.: Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J. Alloys Compd. 799, 231–238 (2019)

    Article  CAS  Google Scholar 

  20. Matin, M.A., Hossain, M.N., Rhaman, M.M., Mozahid, F. A., Ali, M.A., Hakim, M.A., Islam, M.F.: Dielectric and optical properties of Ni-doped LaFeO3 nanoparticles. SN Applied Sciences vol 1, Article number: 1479 (2019)

  21. Mondal, R.A., Murty, B.S., Murthy, V.R.K.: Maxwell–Wagner polarization in grain boundary segregated NiCuZn ferrite. Curr. Appl. Phys. 14(12), 1727–1733 (2014)

    Article  ADS  Google Scholar 

  22. Paswan, S.K., Pradhan, L.K., Kumar, P., Kumari, S., Kar, M., Kumar, L.: Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study. Phys. Scr. 97, 095812 (2022)

    Article  CAS  ADS  Google Scholar 

  23. Rajulu, K.C.V., Tilak, B., Rao, K.S.: Impedance spectroscopy study of BNKLT polycrystalline ceramic. Appl. Phys. A 106, 533–43 (2012)

    Article  CAS  ADS  Google Scholar 

  24. Cokun, M., et al.: The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634 (2018)

    Article  ADS  Google Scholar 

  25. Rahman, M.A., Hossain, A.K.M.A.: Electrical transport properties of Mn-Ni-Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 025803 (2014)

    Article  CAS  ADS  Google Scholar 

  26. Mazen, S., Nawara, A., Abu-Elsaad, N.: Investigation of dielectric behavior in Ni0.7-xZn0.3MxFe2O4 (M=Mn/Co/Cu) ferrites by impedance spectroscopy. Ceram. Int.t. 47, 9856–9865 (2021)

    Article  CAS  Google Scholar 

  27. Rearick, T.M., Catchen, G.L., Adams, J.M.: Combined magnetic-dipole and electric-quadrupole hyperfine interactions in rare-earth ortho-ferrite ceramics. Phys. Rev. B 48(224), 59 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Pradhan, L.K., Kumar, N. et al. Study on Multiferroic Properties of (0.5) Bi0.5Na0.5TiO3-(0.5) LaFeO3 Particulate Composite. J Supercond Nov Magn 37, 657–665 (2024). https://doi.org/10.1007/s10948-024-06713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06713-w

Keywords

Navigation