Skip to main content
Log in

A Comprehensive Review on Synthesis, Phase Transition, and Applications of VO2

  • Review Article
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The first-order reversible phase transition in vanadium dioxide (VO2), popularly coined as metal-insulator transition (MIT), is a matter of significant interest since its genesis in the late 1950s. VO2 in its bulk form exhibits MIT at a transition temperature (Tt) of 340 K. Below Tt, VO2 crystallizes in the monoclinic insulting phase while above Tt, the crystal structure transforms into a more symmetrical tetragonal-rutile phase which is conducting. Such a structural phase transformation (SPT) draws attention to several oxides of vanadium. Vanadate has been a subject of specific correlated compounds where numerous attempts have been made to develop a single theory that can fully define the peculiar nature of phase transition. Two major models namely Peierls and Mott have been proposed to understand the phase transitions. The structural modification in VO2 is responsible for several applications such as thermochromism, Mott-based transistors, bimorph actuators, hydrogen storage capability, microbolometers, and so on. Ferromagnetism (FM) in the doped VO2 films would enhance the data storage capacity. This review focuses on the systematic advancement in the thin films and nanostructures of VO2 over the past decades and the comprehensive understanding between MIT and SPT for advanced applications. A brief account is also given on various methods of synthesis of these oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from ACS Nano 5, 3373-3384 (2011) [25]

Fig. 4

Reproduced with permission from AIP, Jour. Appl. Phys. 122, 235,102 (2017) [28]

Fig. 5

Reproduced with permission from Elsevier, Nano Energy 13, 58-66 (2015) [55]

Fig. 6

Reproduced with permission from Elsevier, Appl. Surf. Sci. 425, 233–240 (2017) [58]

Fig. 7

Reproduced with permission from Taylor & Francis, Phase Transitions 85, 185-194 (2012) [70]

Fig. 8

Reproduced with permission from APS, Phys. Rev. B 84, 094426 (2011) [111]

Fig. 9

Reproduced with permission from Elsevier, Sol. Ener. Mat. & Sol. Cell. 94, 141-151 (2010) [127]

Fig. 10

Reproduced with permission from Nature, Nat. Comm. 6, 10,104 (2015) [136]

Fig. 11

Reproduced with permission from ACS, ACS Nano 7, 2266-2272 (2013) [145]

Fig. 12

Reproduced with permission from IOPP, Adv. Nat. Sci.: Nanosci. Nanotec. 6, 013002 (2015) [151]

Fig. 13

Reproduced with permission from OSA, Opt. Exp. 28, 6433-6442 (2020) [153]

Similar content being viewed by others

References

  1. Morin, F.J.: Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3, 34–36 (1959)

    CAS  ADS  Google Scholar 

  2. Biswas, S.: The effect of Cr-substitution on the structural, electronic, and magnetic properties of rutile VO2. J. Mag. Mag. Mat. 569, 170449 (2023)

    CAS  Google Scholar 

  3. Kumar, A., Zzaman, M., Kumari, A., Franklin, J.B., Srivastava, S., Verma, V.K., Amemiya, K., Miura, Y., Kandasami, A., Singh, V.R.: Magnetic properties of Cr-doped VO2 thin films in tetragonal phase of rutile and their synchrotron-based electronic structures. J. Appl. Phys. 134, 035304 (2023)

    CAS  ADS  Google Scholar 

  4. Magnéli, A., Anderson, G.: On the MoO2 structure type. Acta Chem. Scand. 9, 1378–1381 (1955)

    Google Scholar 

  5. Magnéli, A.: Orthorhombic rhenium dioxide: a representative of a hypothetic structure type predicted by Pauling & Studivant. Acta Crystallogr. 9, 1038–1039 (1956)

    Google Scholar 

  6. Slater, J.C.: Magnetic effects and the Hartree-Fock equation. Phys. Rev. 82, 4 (1951)

    Google Scholar 

  7. Blum, R.-P., Niehus, H., Hucho, C., Fortrie, R., Ganduglia-Pirovano, M.V., Sauer, J., Shaikhutdinov, S., Freund, H.-J.: Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. Phys. Rev. Lett. 99, 226103 (2007)

    ADS  PubMed  Google Scholar 

  8. Trastoy, J., Camjayi, A., del Valle, J., Kalcheim, Y., Crocombette, J.-P., Gilbert, D.A., Borchers, J.A., Villegas, J.E., Ravelosona, D., Rozenberg, M.J., Schuller, I.K.: Magnetic field frustration of the metal-insulator transition in V2O3. Phys. Rev. B 101, 245109 (2020)

    CAS  ADS  Google Scholar 

  9. Mott, N.F.: The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949)

    ADS  Google Scholar 

  10. Goodenough, J.B.: Narrow-band electrons in transition-metal oxides. Czech J. Phys. 17, 304–336 (1967)

    CAS  ADS  Google Scholar 

  11. Goodenough, J.B., Hong, H.Y.P.: Structures and a two-band model for the system V1-xCrxO2. Phys. Rev. B 8, 1323 (1973)

    ADS  Google Scholar 

  12. Shvets, P., Dikaya, O., Maksimova, K., Goikhman, A.: A review of Raman spectroscopy of vanadium oxides. J. Ram. Spect. 50, 1226–1244 (2019)

    CAS  ADS  Google Scholar 

  13. Kohler, J.: Transition metal oxides. An introduction to their electronic structure and properties. Int. Ser. Mon. Chem. 27, (1992)

  14. Devthade, V., Lee, S.: Synthesis of vanadium dioxide thin films and nanostructures. J. Appl. Phys. 128, 231101 (2020)

    CAS  ADS  Google Scholar 

  15. Nongjai, R., Samad, R., Singh, V.R., Verma, V.K., Kandasami, A.: Magnetic and electronic structures of N implanted iron oxide thin films. J. Mag. Mag. Mat. 527, 167703 (2021)

    CAS  Google Scholar 

  16. Koide, S., Takei, H.: Epitaxial growth of VO2 single crystals and their anisotropic properties in electrical resistivities. J. Phys. Soc. Jpn. 22, 946–947 (1967)

    CAS  ADS  Google Scholar 

  17. Su, Q., Huang, C.K., Wang, Y., Fan, Y.C., Lu, B.A., Lan, W., Wang, Y.Y., Liu, X.Q.: Formation of vanadium oxides with various morphologies by chemical vapor deposition. J. Allo. Comp. 475, 518–523 (2009)

    CAS  Google Scholar 

  18. Blackman, C.S., Piccirillo, C., Binions, R., Parkin, I.P.: Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing. Thin Sol. Film. 517, 4565–4570 (2009)

    CAS  ADS  Google Scholar 

  19. Kiri, P., Warwick, M., Ridley, I., Binions, R.: Fluorine doped vanadium dioxide thin films for smart windows. Thin Sol. Film. 520, 1363–1366 (2011)

    CAS  ADS  Google Scholar 

  20. Fuls, E.N., Hensler, D.H., Ross, A.R.: Reactively sputtered vanadium dioxide thin films. Appl. Phys. Lett. 10, 199–201 (1967)

    CAS  ADS  Google Scholar 

  21. Maklakov, S.S., Polozov, V.I., Maklakov, S.A., Mishin, A.D., Ryzhikov, I.A., Trigub, A.L., Amelichev, V.A., Maslakov, K.I., Kisel, V.N.: Post-deposition annealing of thin RF magnetron sputter-deposited VO2 films above the melting point. J. Alloy. Comp. 763, 558–569 (2018)

    CAS  Google Scholar 

  22. Batista, C., Carneiro, J., Ribeiro, R.M., Teixeira, V.: Reactive pulsed-DC sputtered Nb-doped VO2 coatings for smart thermochromic windows with active solar control. J. Nansci. Nantec. 11, 9042–9045 (2011)

    CAS  Google Scholar 

  23. Borek, M., Qian, F., Nagabushnam, V., Singh, R.K.: Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrate. Appl. Phys. Lett. 63, 3288–3290 (1993)

    CAS  ADS  Google Scholar 

  24. Nakano, M., Shibuya, K., Okuyama, D., Hatano, T., Ono, S., Kawasaki, M., Iwasa, Y., Tokura, Y.: Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012)

    CAS  ADS  PubMed  Google Scholar 

  25. Strelcov, E., Davydov, A.V., Lanke, U., Watts, C., Kolmakov, A.: In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO2 nanowires and nanoplatelets. ACS Nano 5, 3373–3384 (2011)

    CAS  PubMed  Google Scholar 

  26. Zhang, Y., Xiong, W., Chen, W., Zheng, Y.: Recent progress on vanadium dioxide nanostructures and devices: fabrication, properties, applications, and perspectives. Nanomat. 11, 338 (2021)

    CAS  ADS  Google Scholar 

  27. Fan, L.L., Chen, S., Wu, Y.F., Chen, F.H., Chu, W.S., Chen, X., Zhou, C.W., Wu, Z.Y.: Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy. Appl. Phys. Lett. 103, 131914 (2013)

    ADS  Google Scholar 

  28. Yu, S., Wang, S., Lu, M., Zuo, L.: A metal-insulator transition study of VO2 thin films grown on sapphire substrates. J. Appl. Phys. 122, 235102 (2017)

    Google Scholar 

  29. Osmolovskaya, O.M., Murin, I.V., Smirnov, V.M., Osmolovsky, M.G.: Synthesis of vanadium dioxide thin films and nanopowders: a brief review. Rev. Adv. Mat. Sci. 36, 70–74 (2014)

    CAS  Google Scholar 

  30. Greenberg, C.B.: Undoped and doped VO2 films grown from VO(OC3H7)3. Thin Sol. Film. 110, 73–82 (1983)

    CAS  ADS  Google Scholar 

  31. Lv, X., Cao, Y., Yan, L., Li, Y., Zhang, Y., Song, L.: Atomic layer deposition of V1-xMoxO2 thin films, largely enhanced luminous transmittance, solar modulation. ACS Appl. Mat. Int. 10, 6601–6607 (2018)

    CAS  Google Scholar 

  32. Pan, M., Zhong, H., Wang, S., Liu, J., Li, Z., Chen, X., Lu, W.: Properties of VO2 thin film prepared with precursor VO(acac)2. J. Crys. Grow. 265, 121 (2004)

    CAS  ADS  Google Scholar 

  33. Chae, B.G., Kim, H.T.: Effects of W doping on the metal-insulator transition in vanadium dioxide film. Phys. B 405, 663–667 (2010)

    CAS  ADS  Google Scholar 

  34. Cho, J.-H., Byun, Y.-J., Kim, J.-H., Lee, Y.-J., Jeong, Y.-H., Chun, M.-P., Paik, J.-H., Sung, T.H.: Thermochromic characteristics of WO3-doped vanadium dioxide thin films prepared by sol-gel method. Cera. Int. 38, S589–S593 (2012)

    CAS  Google Scholar 

  35. Hanlon, T.J., Coath, J.A., Richardson, M.A.: Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method. Thin Sol. Film. 436, 269–272 (2003)

    CAS  ADS  Google Scholar 

  36. Navas, D.: Hydrothermal synthesis of vanadium oxide microstructures with mixed oxidation states. Reac. 4, 1–25 (2023)

    CAS  Google Scholar 

  37. Gui, Z., Fan, R., Chen, X.H., Wu, Y.C.: A new metastable phase of needle-like nanocrystalline VO2.H2O and phase transformation. J. Sol. Stat. Chem. 157, 250–254 (2001)

    CAS  ADS  Google Scholar 

  38. Kam, K.C., Cheetam, A.K.: Thermochromic VO2 nanorods and other vanadium oxides nanostructures. Mat. Res. Bul. 41, 1015–1021 (2006)

    CAS  Google Scholar 

  39. Sedri, F., Gharbi, N.: Nanorod B phase VO2 obtained by using benzylamine as a reducing agent. Mat. Sci. Eng. B. 139, 114–117 (2007)

    Google Scholar 

  40. Liu, X., Xie, G., Huang, C., Xu, Q., Zhang, Y., Luo, Y.: A facile method of preparing VO2 nanobelts. Mat. Let. 62, 1878–1880 (2008)

    CAS  Google Scholar 

  41. Zhang, K.F., Bao, S.J., Liu, X., Shi, J., Shu, Z.X., Li, H.L.: Hydrothermal synthesis of single-crystal VO2 (B) nanobelts. Mat. Res. Bul. 41, 1985–1989 (2006)

    CAS  Google Scholar 

  42. Chen, W., Peng, J., Mai, L., Yu, H., Qi, Y.: Synthesis and characterization of novel vanadium dioxide nanorods. Sol. Stat. Comm. 132, 513–516 (2004)

    CAS  ADS  Google Scholar 

  43. Wei, M., Qi, Z.-M., Ichihara, M., Hirabayashi, M., Honma, I., Zhou, H.: Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. J. Crys. Grow. 296, 1–5 (2006)

    CAS  ADS  Google Scholar 

  44. Ji, S., Zhang, F., Jin, P.: Selective formation of VO2 (A) or VO2 (R) polymorph by controlling the hydrothermal process. J. Sol. Stat. Chem. 184, 2285–2292 (2011)

    CAS  ADS  Google Scholar 

  45. Popuri, S.R., Miclau, M., Artemenko, A., Labrugere, C., Villesuzanne, A., Pollet, M.: Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1). Inorg. Chem. 52, 4780–4785 (2013)

    CAS  PubMed  Google Scholar 

  46. Zhang, L., Yao, J., Xia, F., Guo, Y., Cao, C., Chen, Z., Gao, Y., Luo, H.: VO2 (D) hollow core-shell microspheres: synthesis, methylene blue dye adsorption and their transformation into C/VOx nanoparticles. Inorg. Chem. Front. 5, 550–558 (2018)

    CAS  Google Scholar 

  47. Hagrman, D., Zubieta, J., Warren, C.J., Meyer, L.M., Teracy, M.M., Haushalter, R.C.: A new polymorph of VO2 prepared by soft chemical methods. J. Sol. Stat. Chem. 138, 178–182 (1998)

    CAS  ADS  Google Scholar 

  48. Liu, L., Cao, F., Yao, T., Xu, Y., Zhou, M., Qu, B., Pan, B., Wu, C., Wei, S., Xie, Y.: New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New J. Chem. 36, 619–625 (2012)

    Google Scholar 

  49. Gao, Y., Cao, C., Dai, L., Luo, H., Kanehira, M., Ding, Y., Wang, Z.L.: Phase and shape controlled VO2 nanostructures by antimony doping. Ener. Env. Sci. 5, 8708–8715 (2012)

    CAS  Google Scholar 

  50. Liu, P., Zhu, K., Gao, Y., Wu, Q., Liu, J., Qiu, J., Gu, Q., Zheng, H.: Ultra-long VO2 (A) nanorods using the high-temperature mixing method under hydrothermal conditions: synthesis, evolution, and thermochromic properties. Cryst. Eng. Comm. 15, 2753–2760 (1994)

    Google Scholar 

  51. Qu, B.Y., Liu, L., Xie, Y., Pan, B.C.: Theoretical study of the new compound VO2 (D). Phys. Lett. A 375, 3474–3477 (2011)

    CAS  ADS  Google Scholar 

  52. Li, M., Li, D., Pan, J., Wu, H., Zhong, L., Wang, Q., Li, G.: In situ triggering and dynamically tracking the phase transition in vanadium dioxide. J. Phys. Chem. C 118, 16279–16283 (2014)

    CAS  Google Scholar 

  53. Sun, Y., Jiang, S., Bi, W., Long, R., Tan, X., Wu, C., Wei, S., Xie, Y.: New aspects of size-dependent metal-insulator transition in synthetic single-domain monoclinic vanadium dioxide nanocrystals. Nanoscl. 3, 4394–4401 (2011)

    CAS  ADS  Google Scholar 

  54. Muñoz-Rojas, D., Baudrin, E.: Synthesis and electroactivity of hydrated and monoclinic rutile-type nanosized VO2. Sol. Stat. Ion. 178, 1268–1273 (2007)

    Google Scholar 

  55. Liang, S., Hu, Y., Nie, Z., Huang, H., Chen, T., Pan, A., Cao, G.: Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Ener. 13, 58–66 (2015)

    CAS  Google Scholar 

  56. Hu, T., Feng, Z., Zhang, Y., Liu, Y., Sun, J., Zheng, J., Jiang, H., Wang, P., Dong, X., Meng, C.: “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front. 8, 79–89 (2021)

    CAS  Google Scholar 

  57. Wu, Y., Chen, G., Wu, X., Li, L., Yue, J., Guan, Y., Hou, J., Shi, F., Liang, J.: Research progress on vanadium oxides for potassium-ion batteries. J. Semi. 44, 041701 (2023)

    ADS  Google Scholar 

  58. Lu, Y., Xiao, X., Cao, Z., Zhan, Y., Cheng, H., Xu, G.: Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique. Appl. Surf. Sci. 425, 233–240 (2017)

    CAS  ADS  Google Scholar 

  59. Chang, T., Zhu, Y., Cao, C., Yang, C., Luo, H., Jin, P., Cao, X.: Multifunctional flexible vanadium dioxide films. Acc. Mat. Res. 2, 714–725 (2021)

    CAS  Google Scholar 

  60. Hu, P., Hu, P., Vu, T.D., Li, M., Wang, S., Ke, Y., Zheng, X., Mai, L., Long, Y.: Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem. Rev. 123, 4353–4415 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Deng, H., Li, X., Ding, B., Du, Y., Li, G., Yang, J., Hu, X.: Fabrication of polymer/layered silicate intercalated nanofibrous mats and their bacterial inhibition activity. Carb. Poly. 83, 973–978 (2011)

    CAS  Google Scholar 

  62. Peierls, R.: More surprises in theoretical physics. p. 105. Princeton University Press (1991)

  63. de Boer, J.H., Verwey, E.J.: Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 49, 59–71 (1937)

    CAS  ADS  Google Scholar 

  64. Mott, N.F., Peierls, R.: Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72 (1937)

    ADS  Google Scholar 

  65. Goodenough, J.B.: The two components of the crystallographic transition in VO2. J. Solid State Chem. 3, 490–500 (1971)

    CAS  ADS  Google Scholar 

  66. Wentzcovitch, R.M., Schulz, W.W., Allen, P.B.: VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389 (1994)

    CAS  ADS  PubMed  Google Scholar 

  67. Budai, J.D., Hong, J., Manley, M.E., Specht, E.D., Li, C.W., Tishler, J.Z., Abernathy, D.L., Said, A.H., Leu, B.M., Boatner, L.A., Mcqueeney, R.J., Delaire, O.: Metallization of vanadium dioxide driven by large phonon entropy. Nature 515, 535–539 (2014)

    CAS  ADS  PubMed  Google Scholar 

  68. Majid, S.S., Shukla, D.K., Rahman, F., Khan, S., Gautam, K., Ahad, A., Francoual, S., Choudhary, R.J., Sathe, V.G., Strempfer, J.: Insulator-metal transitions in the T phase Cr doped and M1 phase undoped VO2 thin films. Phys. Rev. B 98, 075152 (2018)

    CAS  ADS  Google Scholar 

  69. Mott, N.F.: Metal insulator transitions. CRC Press 296, (1990)

  70. Pergament, A., Stefanovich, G.: Insulator-to-metal transition in vanadium sesquioxide: does the Mott criterion work in this case? Phase Transitions: Mult. J. 85(3), 185–194 (2012)

    CAS  ADS  Google Scholar 

  71. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. of Mod. Phys. 70, 1039–1263 (1998)

    CAS  ADS  Google Scholar 

  72. Pergament, A.: Metal-insulator transition: the Mott criterion and coherence length. J. Phys.: Cond. Mat. 15, 3217–3223 (2003)

    CAS  ADS  Google Scholar 

  73. Ẑelenzỳ, V., Petzelt, J., Kaminski, V.V., Romanova, M.V., Golubkov, A.V.: Far infrared conductivity and dielectric response of semiconducting SmS. Solid State Comm. 72, 43–47 (1989)

    ADS  Google Scholar 

  74. Kaminskii, V.V., Vasil’ev, L.N., Romanova, M.V., Solov’ev, S.M.: The mechanism of the appearance of an electromotive force on heating of SmS single crystals. Phys. Sol. Stat. 43, 1030–1032 (2001)

    CAS  ADS  Google Scholar 

  75. Hui, S.: Evaluation of yttrium-doped SrTiO3 as a solid oxide fuel cell anode. A Ph.D. Thesis (2000)

  76. Berggren, K.F.: Metal-to-non-metal transitions in doped germanium and silicon. Phil. Mag.: J. Theo. Exp. Appl. Phys. 27, 1027–1040 (1973)

    CAS  Google Scholar 

  77. Brezini, A., Zekri, N.: Metal-non-metal transitions in doped semiconductors. Phys. Lett. A 161, 301–313 (1991)

    ADS  Google Scholar 

  78. Poklonski, N.A., Syaglo, A.I.: On electrostatic models of a metal-insulator phase transition in crystalline semiconductors with hydrogen-like impurities. Phys. Sol. Stat. 40, 132–135 (1998)

    ADS  Google Scholar 

  79. Ferreira daSilva, A.: Theoretical electronic properties of silicon-containing bismuth. J. Appl. Phys. 76, 5249–5252 (1994)

    ADS  Google Scholar 

  80. Matveev, G.A., Lonchakov, A.T.: Nonohmic conductivity of Ge: Sb near a metal-insulator transition. Semi. 27, 228–231 (1993)

    ADS  Google Scholar 

  81. Poklonski, N.A., Vyrko, S.A., Zabrodski, A.G.: Electrostatic models of insulator metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities. Phys. Sol. Stat. 46, 1101–1106 (2004)

    CAS  ADS  Google Scholar 

  82. El Kaaouachi, A., Nafidi, A., Ah Nafidi, G., Biskupski,: Positive and negative magnetoresistance on both sides of the metal-insulator transition in metallic n-type InP. Semi. Sci. Tech. 18, 69–74 (2003)

    ADS  Google Scholar 

  83. Edwards, P.P., Ramakrishnan, T.V., Rao, C.N.: The metal-nonmetal transition: a global perspective. J. Phys. Chem. 99, 5228–5239 (1995)

    CAS  Google Scholar 

  84. Redmer, R., Holst, B.: Metal-insulator transition in dense hydrogen. Springer 132, 63–84 (2010)

    CAS  Google Scholar 

  85. Lupi, S., Baldassarre, L., Mansart, B., Perucchi, A., Barinov, A., Dudin, P., Papalazarou, E., Rodolakis, F., Rueff, J.P., Itié, J.P., Ravy, S., Nicoletti, D., Postorino, P., Hansmann, P., Parragh, N., Toschi, A., Saha-Dasgupta, T., Andersen, O.K., Sangiovanni, G., Held, K., Marsi, M.: A microscopic view on the Mott transition in chromium-doped. Nat. Comm. 1, 105 (2010)

    CAS  ADS  Google Scholar 

  86. Endres, M., Fukuhara, T., Pekker, D., Cheneau, M., Schauꞵ, P., Gross, C., Demler, E., kuhr, S., Bloch, I.: The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012)

    CAS  ADS  PubMed  Google Scholar 

  87. Kazakova, E.L., Berezina, O.Y., Kirienko, D.A., Markova, N.P.: Vanadium oxide gel films: optical and electrical properties, internal electrochromism and effect of doping. J. Sel. Top. Nan. Elect. Comp. 2, 7–19 (2014)

    Google Scholar 

  88. Honig, J.M.: Electrical transitions in metal oxides. J. Sol. Stat. Chem. 45, 1–13 (1982)

    CAS  ADS  Google Scholar 

  89. Kuwamoto, H., Honig, J.M., Appel, J.: Electrical properties of the (V1-xCrx)2O3 system. Phys. Rev. B 22, 2626–2636 (1980)

    CAS  ADS  Google Scholar 

  90. Abe, H., Terauchi, M., Tanaka, M., Shin, S.: Electron-energy loss spectroscopy study of the metal-insulator transition in V2O3. Jpn. J. Appl. Phys. 37, 584–588 (1998)

    CAS  ADS  Google Scholar 

  91. Jhans, H., Honig, J.M., Chudnovskiy, F.A., Andreev, V.N.: AC Conductivity in the antiferromagnetic insulating phase of the V2O3 system. J. Sol. Stat. Chem. 159, 41–45 (2001)

    CAS  ADS  Google Scholar 

  92. Wang, Y., Xi, X., Li, Z., Liu, E., Yu, Y., Wu, Y., Wu, G., Wang, W.: Dynamic signature of orbital selective Mott transition in the metallic phase of VO2. N. J. Phys. 20, 073026 (2018)

    Google Scholar 

  93. DiLiberto, M., Malpetti, D., Japaridze, G.I., Smith, C.M.: Ultracold fermions in a one dimensional bipartite optical lattice: metal-insulator transitions driven by shaking. Phys. Rev. A 90, 023634 (2014)

    ADS  Google Scholar 

  94. Matsunaga, R., Tsuji, N., Fujita, H., Sugioka, A., Makise, K., Uzawa, Y., Terai, H., Wang, Z., Aoki, H., Shimano, R.: Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014)

    MathSciNet  CAS  ADS  PubMed  Google Scholar 

  95. Hubbard, J.: Electron correlations in narrow energy bands. Proc. Roy. Soc. A 276, 237–257 (1963)

    ADS  Google Scholar 

  96. Gutzwiller, M.: Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett. 10, 159–162 (1963)

    ADS  Google Scholar 

  97. Kanamori, J.: Electron correlation and ferromagnetism of transition metals. Prog. Theo. Phys. 30, 275–289 (1963)

    CAS  ADS  Google Scholar 

  98. Tasaki, H.: The Hubbard model: introduction and selected rigorous results, arXiv:cond-mat/9512169v4. [cond-mat.str-el] (1997)

  99. Kuznetsova, Y.V., Surikov, Vad I., Semenyuk, N.A., Surikov, Val I., Yanchij, S.V., Danilov, S.V.: X-ray diffraction and magnetic properties of vanadium dioxide. J. Phys.: Conf. Ser. 1210, 012076 (2019)

    CAS  Google Scholar 

  100. Pandey, S.K., Kumar, A., Sarkar, S., Mahadevan, P.: Understanding the ferromagnetic insulating state in Cr-doped VO2: density functional and tight binding calculations. Phys. Rev. B 104, 125110 (2021)

    CAS  ADS  Google Scholar 

  101. Kumari, A., Kumar, A., Dawn, R., Franklin, J.B., Vinjamuri, R., Sahoo, S.K., Goutam, U.K., Verma, V.K., Meena, R., Kandasami, A., Mahapatra, S., Kumar, K., Kumar, A., Singh, V.R.: Valence band structure of Cr doped VO2 thin films: a resonant photoelectron spectroscopy study. J. Alloy. Comp. 895, 162620 (2021)

    Google Scholar 

  102. Zzaman, M., Dawn, R., Franklin, J.B., Kumari, A., Ghosh, A., Sahoo, S.K., Verma, V.K., Shahid, R., Goutam, U.K., Kumar, K., Meena, R., Kandasami, A., Singh, V.R.: Elevated transition temperature of VO2 thin films via Cr doping: a combined electrical transport and electronic structure study. J. Elect. Mat. 52, 3818–3830 (2023)

    CAS  ADS  Google Scholar 

  103. Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., Sandstrom, R.: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004)

    CAS  ADS  PubMed  Google Scholar 

  104. Kweon, H., Lee, K.W., Lee, E.M., Park, J., Kim, I.-M., Lee, C.E., Jung, G., Gedanken, A., Koltypin, Y.: Effect of water intercalation on VOx layers in dodecylamine-intercalated vanadium oxide nanotubes. Phys. Rev. B 76, 045434 (2007)

    ADS  Google Scholar 

  105. Vavilova, E., Hellmann, I., Kataev, V., Täschner, C., Büchner, B., Klingeler, R.: Magnetic properties of vanadium oxide nanotubes probed by static magnetization and 51V NMR. Phys. Rev. B 73, 144417 (2006)

    ADS  Google Scholar 

  106. Griffiths, R.B.: Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17 (1969)

    ADS  Google Scholar 

  107. Bray, A.J.: Nature of the Griffiths phase. Phys. Rev. Lett. 59, 586 (1987)

    MathSciNet  CAS  ADS  PubMed  Google Scholar 

  108. Fisher, D.S.: Random transverse field Ising spin chains. Phys. Rev. Lett. 69, 534 (1992)

    CAS  ADS  PubMed  Google Scholar 

  109. Demishev, S.V., Chernobroykin, A.L., Glushkov, V.V., Grigorieva, A.V., Goodilin, E.A., Sluchanko, N.E., Samarin, N.A., Semeno, A.V.: FM-AFM crossover in vanadium oxide nanomaterials. JETP Lett. 91, 11–15 (2010)

    CAS  ADS  Google Scholar 

  110. Petcov, V., Zavalij, P., Lutta, S., Whittingham, M., Parvanov, V., Shastri, S.: Structure beyond Bragg: study of V2O5 nanotubes. Phys. Rev. B 69, 085410 (2004)

    ADS  Google Scholar 

  111. Demishev, S.V., Chernobrovkin, A.L., Glushkov, V.V., Grigorieva, A.V., Goodilin, E.A., Ohta, H., Okubo, S., Fujisawa, M., Sakurai, T., Sluchanko, N.E., Samarin, N.A., Semeno, A.V.: Magnetic properties of vanadium oxide nanotubes and nanolayers. Phys. Rev. B 84, 094426 (2011)

    ADS  Google Scholar 

  112. Ueno, T., Hino, H., Hahimoto, A., Takeichi, Y., Sawada, M., Ono, K.: Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling. Comp. Mat. 4, 4 (2018)

    Google Scholar 

  113. Kubin, M., Guo, M., Ekimova, M., Källman, E., Kern, J., Yachandra, V.K., Yano, J., Nibbering, E.T.J., Lundberg, M., Wernet, P.: Cr L-Edge X-ray absorption spectroscopy of CrIII (acac)3 in solution with measured and calculated absolute absorption cross sections. J. Phys. Chem. B 122, 7375–7384 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dieny, B., Prejbeanu, I.L., Garello, K., Gambardella, P., Frietas, P., Lehndorff, R., Raberg, W., Ebels, U., Demokritov, S.O., Akerman, J., Deac, A., Pirro, P., Adelmann, C., Anane, A., Chumak, A.V., Hirohata, A., Mangin, S., Valenzuela, S.O., Onbaşlı, M.C., d’Aquino, M., Prenat, G., Finochhio, G., Lopez-Diaz, L., Chantrell, R., Chubykalo-Fesenko, O., Bortolotti, P.: Opportunities and challenges for spintronics in the microelectronics industry. Nat. Elect. 3, 456–459 (2020)

    Google Scholar 

  115. Zzaman, M., Franklin, J.B., Kumar, A., Dawn, R., Verma, V.K., Shahid, R., Gupta, M.K., Amemiya, K., Miura, Y., Meena, R., Kandasami, A., Singh, V.R.: Effect of Cr-substitution on vanadium dioxide thin films studied by soft X-ray magnetic circular dichroism. J. Alloy. Comp. 918, 165515 (2022)

    CAS  Google Scholar 

  116. Stewart, M.K., Brownstead, D., Wang, S., West, K.G., Ramirez, J.G., Qazilbash, M.M., Perkins, N.B., Schuller, I.K., Basov, D.N.: Insulator-to-metal transition and correlated metallic state of V2O3 investigated by optical spectroscopy. Phys. Rev. B 85, 205113 (2012)

    ADS  Google Scholar 

  117. Thees, M., Lee, M.-H., Bouwmeester, R.L., Rezende-Gonçalves, P.H., David, E., Zimmers, A., Fortuna, F., Frantzeskakis, E., Vargas, N.M., Kalcheim, Y., Le Fèvre, P., Horiba, K., Kumigashira, H., Biermann, S., Trastoy, J., Rozenberg, M.J., Schuller, I.K., Santander-Syro, A.F.: Imaging the itinerant-to-localized transmutation of electrons across the metal-to-insulator transition in V2O3. Science Adv. 7, 45 (2021)

    Google Scholar 

  118. Gao, Y., Luo, H., Zhang, Z., Kang, L., Chen, Z., Du, J., Kanehira, M., Cao, C.: Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing. Nano Energy 1, 221–246 (2012)

    CAS  Google Scholar 

  119. Cui, Y., Ke, Y., Liu, C., Chen, Z., Wang, N., Zhang, L., Zhou, Y., Wang, S., Gao, Y., Long, Y.: Thermochromic VO2 for energy-efficient smart windows. Joule 2, 1707–1746 (2018)

    CAS  Google Scholar 

  120. Schläefer, J., Sol, C., Li, T., Malarde, D., Portnoi, M., Macdonald, T.J., Laney, S.K., Powell, M.J., Top, I., Parkin, I.P., Papakonstantinou, I.: Thermochromic VO2-SiO2 nanocomposite smart window coatings with narrow phase transition hysteresis and transition gradient width. Sol. Energ. Mat. Sol. Cell. 200, 109944 (2019)

    Google Scholar 

  121. Zou, Z., Zhang, Z., Xu, J., Yu, Z., Cheng, M., Xiong, R., Lu, Z., Liu, Y., Shi, J.: Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. J. Alloy. Comp. 806, 310–315 (2019)

    CAS  Google Scholar 

  122. Granqvist, C.G.: Transparent conductors as solar energy materials: a panoramic review. Sol. Ener. Mat. Sol. Cells 91, 1529–1598 (2007)

    CAS  Google Scholar 

  123. Granqvist, C.G.: Solar energy materials. Appl. Phys. A 52, 83–93 (1991)

    ADS  Google Scholar 

  124. Li, J., Liu, W., Zhang, X., Chu, P.K., Cheung, K.M.C., Yeung, K.W.K.: Temperature-responsive tungsten doped vanadium dioxide thin film starves bacteria to death. Mat. Tod. 22, 35–49 (2019)

    CAS  Google Scholar 

  125. Inomata, Y., Kubota, H., Hata, S., Kiyonaga, E., Morita, K., Yoshida, K., Sakaguchi, N., Toyao, T., Shimizu, K., Ishikawa, S., Ueda, W., Haruta, M., Murayama, T.: Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat. Comm. 12, 557 (2021)

    CAS  ADS  Google Scholar 

  126. Diao, J., Lei, J., Qiu, Y., Liu, D., Li, H.-Y., Xie, B., Li, G.: Study on the phase evolution and element migration of vanadium oxide during the nitridation process. Met. Res. Tech. 118, 3 (2021)

    Google Scholar 

  127. Saeli, M., Piccirillo, C., Parkin, I.P., Ridley, I., Binions, R.: Nano-composite thermochromic thin films and their application in energy-efficient glazing. Sol. Ener. Mat. Sol. Cell. 94, 141–151 (2010)

    CAS  Google Scholar 

  128. Warwick, M.E.A., Binions, R.: Advances in thermochromic vanadium dioxide films. J. Mat. Chem. A 2, 3275–3292 (2014)

    CAS  Google Scholar 

  129. Le, T.K., Pham, P.V., Dong, C.-L., Bahlawane, N., Vernardou, D., Mjejri, I., Rougier, A., Kim, S.W.: Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics an beyond: fundamentals, progress, and perspectives. J. Mat. Chem. C 10, 4019–4071 (2022)

    CAS  Google Scholar 

  130. Taha, M., Balendhran, S., Sherrell, P.C., Kirkwood, N., Wen, D., Wang, S., Meng, J., Bullock, J., Crozier, K.B., Sciacca, L.: Infrared modulation via near-room-temperature phase transitions of vanadium oxides & core-shell composites. J. Mat. Chem. A 11, 7629–7638 (2023)

    CAS  Google Scholar 

  131. Yamada, Y., Ueno, K., Fukumura, T., Yuan, H.T., Shimotani, H., Iwasa, Y., Gu, L., Tsukimoto, S., Ikuhara, Y., Kawasaki, M.: Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065 (2011)

    CAS  ADS  PubMed  Google Scholar 

  132. Ji, H., Wei, J., Natelson, D.: Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 2988–2992 (2012)

    CAS  ADS  PubMed  Google Scholar 

  133. Zhou, Y., Ramanathan, S.: Relaxation dynamics of ionic liquid-VO2 interfaces and influence in electric double-layer transistors. J. Appl. Phys. 111, 084508 (2012)

    ADS  Google Scholar 

  134. Jeong, J., Aetukuri, N., Graf, T., Schladt, T.D., Samant, M.G., Parkin, S.S.P.: Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013)

    CAS  ADS  PubMed  Google Scholar 

  135. Singh, V.R., Jovic, V., Valmianski, I., Ramirez, J.G., Lamoureux, B., Schuller, I.K., Smith, K.E.: Irreversible metal-insulator transition in thin film VO2 induced by soft X-ray irradiation. Appl. Phys. Lett. 111, 241605 (2017)

    ADS  Google Scholar 

  136. Yajima, T., Nishimura, T., Toriumi, A.: Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics. Nat. Comm. 6, 10104 (2015)

    CAS  ADS  Google Scholar 

  137. Mustonen, O., Vasala, S., Chou, T.-L., Chen, J.-M., Karppinen, M.: Competition between ferromagnetism and antiferromagnetism in the rutile Cr1-xVxO2 system. Phys. Rev. B 93, 014405 (2016)

    ADS  Google Scholar 

  138. Rúa, A., Fernández, F.E., Sepúlveda, N.: Bending in VO2-coated microcantilevers suitable for thermally activated actuators. J. Appl. Phys. 107, 074506 (2010)

    ADS  Google Scholar 

  139. Liu, K., Cheng, C., Cheng, Z., Wang, K., Ramesh, R., Wu, J.: Giant-amplitude high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett. 12, 6302–6308 (2012)

    CAS  ADS  PubMed  Google Scholar 

  140. Cao, J., Fan, W., Zhou, Q., Sheu, E., Liu, A., Barrett, C., Wu, J.: Colossal thermal-mechanical actuation via phase transition in single-crystal VO2 microcantilevers. J. Appl. Phys. 108, 083538 (2010)

    ADS  Google Scholar 

  141. Toda, M., Ono, T., Liu, F., Voiculescu, I.: Evaluation of biomaterial cantilever beam for heat sensing at atmospheric pressure. Rev. Sci. Inst. 81, 055104 (2010)

    ADS  Google Scholar 

  142. Cabrera, R., Merced, E., Sepúveda, N., Fernández, F.E.: Dynamics of photothermally driven VO2-coated microcantilevers. J. Appl. Phys. 110, 094510 (2011)

    ADS  Google Scholar 

  143. Cao, J., Ertekin, E., Srinivasan, V., Fan, W., Huang, S., Zheng, H., Yim, J.W.L., Khanal, D.R., Ogletree, D.F., Grossman, J.C.: Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotec. 4, 732–737 (2009)

    CAS  ADS  Google Scholar 

  144. Cheng, C., Fan, W., Cao, J., Ryu, S.-G., Ji, J., Grigoropoulos, C.P., Wu, J.: Heat transfer across the interface between nanoscale solids and gas. ACS Nano 5, 10102–10107 (2011)

    CAS  PubMed  Google Scholar 

  145. Gu, Q., Falk, A., Wu, J., Ouyang, L., Park, H.: Current-driven phase oscillation and domain-wall propagation WxV1-xO2 nanobeams. Nano Lett. 7, 363–366 (2007)

    CAS  ADS  PubMed  Google Scholar 

  146. Wang, K., Cheng, C., Cardona, E., Guan, J., Liu, K., Wu, J.: Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano 7, 2266–2272 (2013)

    CAS  PubMed  Google Scholar 

  147. Zhang, Y.-Q., Chen, K., Shen, H., Wang, Y.-C., Hedhili, M.N., Zhang, X., Li, J., Shan, Z.-W.: Achieving room-temperature M2-phase VO2 nanowires for superior thermal actuation. Nan. Res. 14, 4146–4153 (2021)

    CAS  ADS  Google Scholar 

  148. Lamoureux, B.R., Jovic, V., Singh, V.R., Smith, K.E.: Orbital orientation mapping of V2O5 thin films. J. Appl. Phys. 122, 045305 (2017)

    ADS  Google Scholar 

  149. Honicke, D., Xu, J.: Study of thermally induced vanadate dispersion. J. Phys. Chem. 92, 4699–4702 (1988)

    Google Scholar 

  150. Xie, Y.-C., Tang, Y.-Q.: Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: application to heterogeneous catalysis. Adv. Cat. 37, 1–43 (1990)

    CAS  Google Scholar 

  151. Tal-Gutelmacher, E., Eliezer, D.: Hydrogen-assisted degradation of titanium based alloys. Mater. Trans. 45, 1594–1600 (2004)

    CAS  Google Scholar 

  152. Xu, J.J., Cheung, H.Y., Shi, S.Q.: Mechanical properties of titanium hydride. J. Alloys Comp. 436, 82–85 (2007)

    CAS  Google Scholar 

  153. Tarnawski, Z., Zakrzewska, K., Kim-Ngan, N.-T.H., Krupska, M., Sowa, S., Drogowska, K., Havela, L., Balogh, A.G.: Hydrogen storage in Ti, V and their oxides-based thin films. Adv. Nat. Sci: Nanosci. Nanotec. 6, 013002 (2015)

    CAS  Google Scholar 

  154. Tarnawski, Z., Kim-Ngan, N.-T.H.: Hydrogen storage characteristics of Ti – and V – based thin films, J. Sci.: Adv. Mat. Dev. 1, 141–146 (2016)

    Google Scholar 

  155. Lee, H., Jung, M., Oh, H., Lee, K.: Electrochemical anodic formation of VO2 nanotubes and hydrogen sorption property. J. Elec. Sci. Tech. 12, 212–216 (2021)

    CAS  Google Scholar 

  156. Kang, H., Ko, M., Choi, H., Lee, W., Singh, R., Kumar, M., Seo, H.: Surface hydrogeneration of vanadium dioxide nanobeam to manipulate insulator-to-metal transition using hydrogen plasma. J. Asi. Cer. Soc. 9, 1310–1319 (2021)

    Google Scholar 

  157. Yeh, T.-H., Tsai, C.-K., Chu, S.-Y., Lee, H.-Y., Lee, C.-T.: Performance improvement of Y-doped VOx microbolometers with nanomesh antireflection layer. Opt. Exp. 28, 6433–6442 (2020)

    Google Scholar 

  158. Schoeman, J., du Plessis, M.: An analytic model employing an elliptical surface area to determine the gaseous thermal conductance of uncooled VOx microbolometers. Sens. Act. A: Phys. 250, 229–236 (2016)

    CAS  Google Scholar 

  159. Alaboz, H., Demirhan, Y., Yuce, H., Aygun, G., Ozyuzer, L.: Comparative study of annealing and gold dopant effect on DC sputtered vanadium oxide films for bolometer applications. Opt. Quant. Elect. 49, 1–10 (2017)

    CAS  Google Scholar 

  160. Ali, M., Riaz, S., El-Sayed, M., Sherif, M., Ansari, M.Z., Farid, M.H.T.: Study of vanadium oxide nanoparticles for optical and biomedical applications. Appl. Nanosci. 13, 4641–4649 (2023)

    CAS  ADS  Google Scholar 

  161. Wu, B., Zhang, Z., Chen, B., Zheng, Z., You, C., Liu, C., Li, X., Wang, J., Wang, Y., Song, E., Cui, J., An, Z., Huang, G., Mei, Y.: One-step rolling fabrication of VO2 tubular bolometers with polarization-sensitive and omnidirectional detection. Sci. Adv. 9, eadi7805 (2023)

Download references

Acknowledgements

AK would like to acknowledge UGC, New Delhi/CUSB, Gaya, for financial support.

Funding

This work is supported by Science and Engineering Research Board-Department of Science and Technology File No CRG/2022/002052.

Author information

Authors and Affiliations

Authors

Contributions

Ashutosh Kumar: investigation, methodology, software, writing—original draft; Akhilananda Kumar: formal analysis, review and editing; Asokan Kandasami: formal analysis, review and editing, validation; Vijay Raj Singh: conceptualization, formal analysis, review and editing, validation, supervision, funding acquisition.

Corresponding authors

Correspondence to Ashutosh Kumar or Vijay Raj Singh.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, A., Kandasami, A. et al. A Comprehensive Review on Synthesis, Phase Transition, and Applications of VO2. J Supercond Nov Magn 37, 475–498 (2024). https://doi.org/10.1007/s10948-024-06705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06705-w

Keywords

Navigation