Skip to main content
Log in

Structural, Magnetic, and Transport Properties of MnNiGa Ribbon

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetic properties and the existence of spin reorientation have been systematically investigated in MnNiGa ribbons. The thermomagnetic curve reveals that as-spun and annealed ribbons undergo a two-step magnetic structural transformation and the magnetic properties of the annealed ribbons are improved. The splitting behaviour of zero-field-cooled and filed-cooled (ZFC-FC) curve shows that the ribbon has occurred a spin reorientation transformation. The ZFC and isothermal magnetization curves tested by changing the direction of the magnetic field illustrate the existence of magnetic anisotropy, and the direction of  H// is easily magnetized. In the direction of easy magnetization, the value of magnetic entropy is about 1.54 J/kg K. The easy magnetization direction is proved to be in-plane by the decrease of the magnetic domain phase shift. It is clear that the magnetoresistance is negative in all temperature ranges and the nonlinear variation at low fields accounts for the presence of spin reorientation. The variation of Hall resistance curve in a low magnetic field reflects the existence of an abnormal Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Dutta, P., Pramanick, S., Das, D., Chatterjee, S.: Magnetic and magnetotransport properties of MnCo0.8V0.2Ge alloy. AIP Conf. Proc. 1832, 130014  (2017)

  2. Li, Y., Zhang, H., Tao, K., Wang, Y., Wu, M., Long, Y.: Giant magnetocaloric effect induced by reemergence of magnetostructural coupling in Si-doped Mn0.95CoGe compounds. Mater. Des. 114, 410–415 (2017)

  3. Wu, R.R., Bao, L.F., Hu, F.X., Wu, H., Huang, Q.Z., Wang, J., Dong, X.L., Li, G.N., Sun, J.R., Shen, F.R., Zhao, T.Y., Zheng, X.Q., Wang, L.C., Liu, Y., Zuo, W.L., Zhao, Y.Y., Zhang, M., Wang, X.C., Jin, C.Q., Rao, G.H., Han, X.F., Shen, B.G.: Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci. Rep. 5, 18027 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Yadav, V.P., Mandal, P.K., Bhattacharya, A., Bhattacharya, S.: Recombinant SINEs are formed at high frequency during induced retrotransposition in vivo. Nat. Commun. 3, 854 (2012)

    Article  PubMed  ADS  Google Scholar 

  5. Zhang, C.L., Han, Z.D., Qian, B., Shi, H.F., Zhu, J., Chen, C., Wang, T.Z.: Magnetostructural transformation and magnetocaloric effect in MnNiGe1-xGax alloys. J. Appl. Phys. 114 (2013)

  6. Dutta, P., Das, D., Chatterjee, S., Pramanick, S., Majumdar, S.: Hydrostatic pressure effect on the magnetocaloric behavior of Ga-doped MnNiGe magnetic equiatomic alloy. J. Phys. D Appl. Phys. 49 (2016)

  7. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B 72 (2005)

  9. Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Trung, N.T., Ou, Z.Q., Gortenmulder, T.J., Tegus, O., Buschow, K.H.J., Brück, E.: Tunable thermal hysteresis in MnFe(P, Ge) compounds. Appl. Phys. Lett. 94, 102513 (2009)

    Article  ADS  Google Scholar 

  11. SzytuŁa, A., Pȩdziwiatr, A.T., Tomkowicz, Z., Bażela, W.: Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe. J. Magn. Magn. Mater. 25, 176–186 (1981)

    Article  ADS  Google Scholar 

  12. Johnson, V., Frederick, C.G.: Magnetic and crystallographic properties of ternary manganese silicides with ordered Co2P structure. Phys. Status Solidi A 20, 331–335 (1973)

  13. Bażla, W., Szytuła, A., Zaja̧c, W.: Magnetic ordering in CoMnSn studied by neutron diffraction and 119Sn Mössbauer spectroscopy. Solid State Commun. 38, 875–877 (1981)

  14. Nizioł, S., Bombik, A., Baz̊ela, W., Szytuła, A., Fruchart, D.: Crystal and magnetic structure of CoxNi1-xMnGe system. J. Magn. Magn. Mater. 27, 281–292 (1982)

  15. Niziol, S., Bińczycka, H., Szytula, A., Todorović, J., Fruchart, R., Senateur, J.P., Fruchart, D.: Structure magnétique des MnCoSi. Phys. Status Solidi (a). 45, 591–597 (1978)

  16. Shiraishi, H., Niida, H., Iguchi, Y., Mitsudo, S., Motokawa, M., Ohayama, K., Miki, H., Onodera, H., Hori, T., Kanematsu, K.: Structural and magnetic properties of Ni2In type (Mn1 − xNix)65Ga35 compounds. J. Magn. Magn. Mater. 196–197, 660–662 (1999)

    Article  ADS  Google Scholar 

  17. You, Y., Xu, G., Tang, J., Gong, Y., Xu, F.: Competitive exchange interaction and noncollinear magnetic structure in Mn-based Ni2In type alloys. Intermetallics 106, 88–93 (2019)

    Article  CAS  Google Scholar 

  18. Ahmad Shah, I., Xu, G., ul Hassan, N., Arif, M., You, Y., Liu, J., Gong, Y., Miao, X., Xu, F.: Structural and magneto-transport properties of Mn1+xCo1−xSn (x = 0.0–1.0) alloys. J. Magn. Magn. Mater. 465, 360–364 (2018)

  19. Anzai, S., Ozawa, K.: Coupled nature of magnetic and structural transition in MnNiGe under pressure. Phys. Rev. B 18, 2173–2178 (1978)

    Article  CAS  ADS  Google Scholar 

  20. Shiraishi, H., Hori, T., Ohkubo, N., Ohoyama, K.: Magnetic and neutron diffraction study on Ni2In type (Mn1−xCox)65Sn35. Physica B 384, 319–321 (2006)

    Article  CAS  ADS  Google Scholar 

  21. Shiraishi, H., Iguchi, Y., Ohoyama, K., Yamaguchi, Y., Shimizu, K., Hori, T.: Structural and magnetic properties of Ni2In-type (Mn1−xCux)66Ga34 compounds. J. Magn. Magn. Mater. 226–230, 1081–1082 (2001)

    Article  ADS  Google Scholar 

  22. Ding, B., Zhang, J., Li, H., Zhang, S., Liu, E., Wu, G., Zhang, X., Wang, W.: Thermally induced generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in Mn–Ni–Ga magnets. Appl. Phys. Lett. 116, 132402 (2020)

    Article  CAS  ADS  Google Scholar 

  23. Karplus, R., Luttinger, J.M.: Hall Effect in Ferromagnetics. Phys. Rev. 95, 1154–1160 (1954)

    Article  ADS  Google Scholar 

  24. Smit, J.: The spontaneous hall effect in ferromagnetics I. Physica 21, 877–887 (1955)

    Article  CAS  ADS  Google Scholar 

  25. Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559–4566 (1970)

    Article  ADS  Google Scholar 

  26. Bruno, P., Dugaev, V.K., Taillefumier, M.: Topological Hall effect and Berry phase in magnetic nanostructures. Phys. Rev. Lett. 93, 096806 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Wang, W., Zhang, Y., Xu, G., Peng, L., Ding, B., Wang, Y., Hou, Z., Zhang, X., Li, X., Liu, E., Wang, S., Cai, J., Wang, F., Li, J., Hu, F., Wu, G., Shen, B., Zhang, X.-X.: A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic nanodomains in a wide temperature range of 100–340 K. Adv. Mater. 28, 6887–6893 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Ding, B., Li, Y., Xu, G., Wang, Y., Hou, Z., Liu, E., Liu, Z., Wu, G., Wang, W.: Large topological Hall effect in nonchiral hexagonal MnNiGa films. Appl. Phys. Lett. 110, 092404 (2017)

    Article  ADS  Google Scholar 

  29. Xu, G., You, Y., Tang, J., Zhang, H., Li, H., Miao, X., Gong, Y., Hou, Z., Cheng, Z., Wang, J., Studer, A.J., Xu, F., Wang, W.: Simultaneous tuning of magnetocrystalline anisotropy and spin reorientation transition via Cu substitution in Mn-Ni-Ga magnets for nanoscale biskyrmion formation. Phys. Rev. B. 100 (2019)

  30. Li, Y., Xu, G., Ding, B., Liu, E., Wang, W., Liu, Z.: The electronic and magnetic properties and topological Hall effect in hexagonal MnNiGa alloy films by varying Mn contents. J. Alloy. Compd. 725, 1324–1329 (2017)

    Article  CAS  Google Scholar 

  31. Aliev, A.M., Batdalov, A.B., Kamilov, I.K., Koledov, V.V., Shavrov, V.G., Buchelnikov, V.D., García, J., Prida, V.M., Hernando, B.: Magnetocaloric effect in ribbon samples of Heusler alloys Ni-Mn-M (M=In, Sn). Appl. Phys. Lett. 97, 212505 (2010)

    Article  ADS  Google Scholar 

  32. Xuan, H.C., Xie, K.X., Wang, D.H., Han, Z.D., Zhang, C.L., Gu, B.X., Du, Y.W.: Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl. Phys. Lett. 92, 242506 (2008)

  33. Zhang, L., Ma, S., Ge, Q., Liu, K., Jiang, Q., Han, X., Yang, S., Yu, K., Zhong, Z.: A systematic study of the antiferromagnetic-ferromagnetic conversion and competition in MnNiGe: Fe ribbon systems. J. Mater. Sci. Technol. 33, 1362–1370 (2017)

    Article  CAS  Google Scholar 

  34. Xu, K., Li, Z., Zhou, H.-C., Zhang, Y.-L., Yan, D., Sun, W., Zheng, D., Jing, C.: Structural and magnetocaloric properties in hexagonal MnNiGa alloys with Co doping. Rare Met. 36, 601–606 (2017)

    Article  CAS  Google Scholar 

  35. Tang, J.-X., Wang, P.-H., You, Y.-R., Wang, Y.-D., Xu, Z., Hou, Z.-P., Zhang, H.-G., Xu, G.-Z., Xu, F.: Abnormal low-field M-type magnetoresistance in hexagonal noncollinear ferromagnetic MnFeGe alloy. Rare Met. 41, 2680–2687 (2022)

    Article  CAS  Google Scholar 

  36. Aharoni, A.: Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998)

    Article  CAS  ADS  Google Scholar 

  37. Skomski, R., Hadjipanayis, G.C., Sellmyer, D.J.: Effective demagnetizing factors of complicated particle mixtures. IEEE Trans. Magn. 43, 2956–2958 (2007)

    Article  CAS  ADS  Google Scholar 

  38. Prozorov, R., Kogan, V.G.: Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. Appl. 10, 014030 (2018)

    Article  CAS  ADS  Google Scholar 

  39. Bian, K., Gerber, C., Heinrich, A.J., Müller, D.J., Scheuring, S., Jiang, Y.: Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021)

    Article  CAS  Google Scholar 

  40. Tomlinson, S.L., Hill, E.W.: Modelling the perturbative effect of MFM tips on soft magnetic thin films. J. Magn. Magn. Mater. 161, 385–396 (1996)

    Article  CAS  ADS  Google Scholar 

  41. Casiraghi, A., Corte-León, H., Vafaee, M., Garcia-Sanchez, F., Durin, G., Pasquale, M., Jakob, G., Kläui, M., Kazakova, O.: Individual skyrmion manipulation by local magnetic field gradients. Commun. Phys. 2, 145 (2019)

    Article  Google Scholar 

  42. Ojha, B., Mallick, S., Panigrahy, S., Sharma, M., Thiaville, A., Rohart, S., Bedanta, S.: Driving skyrmions with low threshold current density in Pt/CoFeB thin film. Phys. Scr. 98, 035819 (2023)

    Article  ADS  Google Scholar 

  43. Neubauer, A., Pfleiderer, C., Binz, B., Rosch, A., Ritz, R., Niklowitz, P.G., Böni, P.: Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Vidler, L.R., Watson, I.A., Margolis, B.J., Cummins, D.J., Brunavs, M.: Investigating the behavior of published PAINS alerts using a pharmaceutical company data set. ACS Med. Chem. Lett. 9, 792–796 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Z.H., Zhang, Y.J., Liu, G.D., Ding, B., Liu, E.K., Jafri, H.M., Hou, Z.P., Wang, W.H., Ma, X.Q., Wu, G.H.: Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Li, Y., Liu, E.K., Wu, G.H., Wang, W., Liu, Z.: Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films. J. Appl. Phys. 116, 223906 (2014)

    Article  ADS  Google Scholar 

  47. Li, Y., Kanazawa, N., Yu, X.Z., Tsukazaki, A., Kawasaki, M., Ichikawa, M., Jin, X.F., Kagawa, F., Tokura, Y.: Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 110, 117202 (2013)

    Article  PubMed  ADS  Google Scholar 

  48. Huang, S.X., Chien, C.L.: Extended Skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012)

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Kanazawa, N., Onose, Y., Arima, T., Okuyama, D., Ohoyama, K., Wakimoto, S., Kakurai, K., Ishiwata, S., Tokura, Y.: Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

This work is supported by the China Scholarship Council (No. 201808140031), The Natural Science Foundation of Shanxi Province (No.201901D111267, 202203021222201, 202203021212304, 20210302124535), and The Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghua Chen.

Ethics declarations

Competing Interests

All the authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhao, S., Yang, F. et al. Structural, Magnetic, and Transport Properties of MnNiGa Ribbon. J Supercond Nov Magn 37, 59–68 (2024). https://doi.org/10.1007/s10948-023-06646-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06646-w

Keywords

Navigation