Skip to main content

Advertisement

Log in

Theoretical Investigation of Half-metallicity and Pressure-induced Half-metallic Band Gap in Half Heusler RuMnZ (Z = Si, Ge, Sn, P, As, Sb, Se, and Te) Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We predict a series of XYZ-type half-Heusler RuMnZ (Z = Si, Ge, Sn, P, As, Sb, Se, and Te) alloys, using density functional theory (DFT) calculations. Structural, electronic structure, magnetic moments, and elastic properties are carried out using both GGA and GGA+U approximations to determine the viability of this series of alloys for spintronic applications. The band structure (BS) and density of states (DOS) calculations are carried out to explain the half-metallic and magnetic nature of the predicted alloys. RuMnZ alloys stabilize to the F\(\overline{4 }\)3 m space group with a ferrimagnetic (FiM) ground state, with the exception of RuMnSn, which has a ferromagnetic (FM) ground state. Interestingly, RuMnP/As/Te alloys exhibit half-metallic properties with 100% spin polarization at the Fermi level among the predicted alloys. When U is included in the calculations (GGA+U), the half-metallicity is completely lifted. Further, upon incorporating pressure under GGA+U, a band gap is induced again, and the half-metallicity in RuMnTe is robust up to a compressive pressure of 140 GPa. Calculation of the elastic properties shows that RuMnZ has a ductile nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the published article.

References

  1. Heusler, F., Starck, W., Haupt, E.: Verh. Dtsch. Phys. Ges. 5, 219–223 (1903)

    Google Scholar 

  2. Winterlik, J., Fecher, G.H., Thomas, A., Felser, C.: Superconductivity in palladium-based Heusler compounds. Phys. Rev. B. Condens. Matter. Mater. Phys. 79, 1–9 (2009). https://doi.org/10.1103/PhysRevB.79.064508

    Article  Google Scholar 

  3. Ouardi, S., Shekhar, C., Fecher, G.H., Kozina, X., Stryganyuk, G., Felser, C., Ueda, S., Kobayashi, K.: Electronic structure of Pt based topological Heusler compounds with C1b structure and “zero band gap.” Appl. Phys. Lett. 98, 20–23 (2011). https://doi.org/10.1063/1.3592834

    Article  Google Scholar 

  4. Ramsteiner, M., Brandt, O., Flissikowski, T., Grahn, H.T., Hashimoto, M., Herfort, J., Kostial, H.: Co2FeSi/GaAs/(Al, Ga) As spin light-emitting diodes: competition between spin injection and ultrafast spin alignment. Phys. Rev. B. Condens. Matter. Mater. Phys. 78, 1–4 (2008). https://doi.org/10.1103/PhysRevB.78.121303

    Article  Google Scholar 

  5. Durukan, İK., Çiftci, Y.Ö.: Anisotropic elastic, electronic and vibrational properties of the semiconductor AgScX (X = Ge, C) Compounds. J. Electron. Mater. 49, 1849–1856 (2020). https://doi.org/10.1007/s11664-019-07859-3

    Article  ADS  Google Scholar 

  6. Wang, S., Yu, J.: Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31, 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

    Article  Google Scholar 

  7. Holmes, S.N., Pepper, M.: Cobalt-based Heusler alloys for spin-injection devices. J. Supercond. Nov. Magn. 16, 191–194 (2003)

    Article  ADS  Google Scholar 

  8. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990). https://doi.org/10.1063/1.102730

    Article  ADS  Google Scholar 

  9. Kilian, K.A., Victora, R.H.: Electronic structure of Ni2MnIn for use in spin injection. J. Appl. Phys. 87, 7064–7066 (2000). https://doi.org/10.1063/1.372932

    Article  ADS  Google Scholar 

  10. Jedema, F.J., Nijboer, M.S., Filip, A.T., van Wees, B.J.: Spin injection and spin accumulation in all-metal mesoscopic spin valves. Phys. Rev. B. Condens. Matter. Mater. Phys. 67, 1–16 (2003). https://doi.org/10.1103/PhysRevB.67.085319

    Article  Google Scholar 

  11. Caballero, J.A., Park, Y.D., Childress, J.R., Bass, J., Chiang, W.-C., Reilly, A.C., Pratt, W.P., Petroff, F.: Magnetoresistance of NiMnSb-based multilayers and spin valves. J. Vac. Sci. Technol. A 16, 1801–1805 (1998). https://doi.org/10.1116/1.581110

    Article  Google Scholar 

  12. Tanaka, C.T., Nowak, J., Moodera, J.S.: Spin-polarized tunneling in a half-metallic ferromagnet. J. Appl. Phys. 86, 6239–6242 (1999). https://doi.org/10.1063/1.371678

    Article  ADS  Google Scholar 

  13. Miyazaki, T., Tezuka, N.: Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions. J. Magn. Magn. Mater. 151, 403–410 (1995). https://doi.org/10.1016/0304-8853(95)00563-3

    Article  ADS  Google Scholar 

  14. Winterlik, J., Chadov, S., Gupta, A., Alijani, V., Gasi, T., Filsinger, K., Balke, B., Fecher, G.H., Jenkins, C.A., Casper, F., Kübler, J., Liu, G., Gao, L., Parkin, S.S.P., Felser, C.: Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 1–5 (2012). https://doi.org/10.1002/adma.201201879

    Article  Google Scholar 

  15. de Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Half-metallic ferromagnets and their magneto-optical properties. J. Appl. Phys. 55, 2151–2154 (1984). https://doi.org/10.1063/1.333593

    Article  ADS  Google Scholar 

  16. de Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  17. Salazar Mejía, C., Küchler, R., Nayak, A.K., Felser, C., Nicklas, M.: Uniaxial-stress tuned large magnetic-shape-memory effect in Ni-Co-Mn-Sb Heusler alloys. Appl. Phys. Lett. 110, 071901 (2017). https://doi.org/10.1063/1.4976212

    Article  ADS  Google Scholar 

  18. Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006). https://doi.org/10.1038/nature04493

    Article  ADS  Google Scholar 

  19. Masrour, R., Jabar, A., Hlil, E.K.: Modeling of the magnetocaloric effect in Heusler Ni 2 MnGa alloy: Ab initio calculations and Monte Carlo simulations. Intermetallics. 91, 120–123 (2017). https://doi.org/10.1016/j.intermet.2017.08.012

    Article  Google Scholar 

  20. Wang, B.M., Wang, L., Liu, Y., Zhao, B.C., Zhao, Y., Yang, Y., Zhang, H.: Strong thermal-history-dependent magnetoresistance behavior in Ni49.5Mn34.5In16. J. Appl. Phys. 106, 1–8 (2013). https://doi.org/10.1063/1.3225578

    Article  Google Scholar 

  21. Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50Mn50 − xInx alloys (x = 14–16) upon martensitic transformation. Appl. Phys. Lett. 89, 14–17 (2014). https://doi.org/10.1063/1.2362581

    Article  Google Scholar 

  22. Chieda, Y., Kanomata, T., Fukushima, K., Matsubayashi, K., Uwatoko, Y., Kainuma, R.: Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure. J. Alloys. Compd. 486, 51–54 (2009). https://doi.org/10.1016/j.jallcom.2009.06.206

    Article  Google Scholar 

  23. Kuz’min, M.D., Skokov, K.P., Radulov, I., Schwöbel, C.A., Foro, S., Donner, W., Werwiński, M., Rusz, J., Delczeg-Czirjak, E., Gutfleisch, O.: Magnetic anisotropy of La2Co7. J. Appl. Phys. 118, 053905 (2015). https://doi.org/10.1063/1.4927849

    Article  ADS  Google Scholar 

  24. Li, Y., Chen, H., Wang, G., Yuan, H.: Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer. Appl. Surf. Sci. 371, 296–300 (2016). https://doi.org/10.1016/j.apsusc.2016.02.183

    Article  ADS  Google Scholar 

  25. Bag, P., Liu, W.Z., Kuo, Y.K., Kuo, C.N., Lue, C.S.: Thermoelectric properties of chemically substituted Heusler-type Ru2-xNb1+xGa and Ru2NbGa1-xMx (M = In, Ge, and Sn) alloys. J. Alloys Compd. 849, 1–10 (2020). https://doi.org/10.1016/j.jallcom.2020.156617

    Article  Google Scholar 

  26. Krishnaveni, S., Sundareswari, M.: Band gap engineering in ruthenium-based Heusler alloys for thermoelectric applications. Int. J. Energy Res. 42, 764–775 (2018). https://doi.org/10.1002/er.3864

    Article  Google Scholar 

  27. Yalcin, B.G.: Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds. J. Magn. Magn. Mater. 408, 137–146 (2016). https://doi.org/10.1016/j.jmmm.2016.02.064

    Article  ADS  Google Scholar 

  28. Guermit, Y., Caid, M., Rached, D., Drief, M., Rekab-Djabri, H., Lantri, T., Rached, H., Benkhettou, N.: Investigation of structural, elastic, electronic, magnetic and thermoelectric proprieties for Mn2RhZ (Z = Al, Si and Ge) full-Heusler alloys. Int. J. Thermophys. 42, 1–18 (2021). https://doi.org/10.1007/s10765-021-02841-w

    Article  Google Scholar 

  29. Lopes, M.V., de Souza, E.C., Santos, J.G., de Araujo, J.M., Lima, L., de Oliveira, A.B., Bohn, F., Correa, M.A.: Modulating the spin seebeck effect in Co2FeAl heusler alloy for sensor applications. Sensors. 20, 1–14 (2020). https://doi.org/10.3390/s20051387

    Article  Google Scholar 

  30. Masuda, K., Uchida, K.I., Iguchi, R., Miura, Y.: First-principles study of the anisotropic magneto-Peltier effect. Phys. Rev. B 99, 2–7 (2019). https://doi.org/10.1103/PhysRevB.99.104406

    Article  Google Scholar 

  31. Das, R., Iguchi, R., Uchida, K.I.: Systematic Investigation of Anisotropic Magneto-Peltier Effect and Anomalous Ettingshausen Effect in Ni Thin Films. Phys. Rev. Appl. 11, 1–13 (2019). https://doi.org/10.1103/PhysRevApplied.11.034022

    Article  Google Scholar 

  32. Elahmar, M.H., Rached, H., Rached, D.: The half metallic feature at high temperature of the novel half-Heusler alloys and their [100] oriented layered superlattices: A DFT investigations. Mater. Chem. Phys. 267, 1–13 (2021). https://doi.org/10.1016/j.matchemphys.2021.124712

    Article  Google Scholar 

  33. Belasri, A., Rached, D., Rached, H., Bourachid, I., Guermit, Y., Caid, M.: The half metallic behavior at high temperature of highly spin-polarized V-based Heusler alloy: DFT calculations. Eur. Phys. J. B. 94, 1–7 (2021). https://doi.org/10.1140/epjb/s10051-021-00127-6

    Article  Google Scholar 

  34. Bourachid, I., Rached, D., Rached, H., Bentouaf, A., Rached, Y., Caid, M., Abidri, B.: Magneto-electronic and thermoelectric properties of V-based Heusler in ferrimagnetic phase. Appl. Phys. A 128, 1–13 (2022). https://doi.org/10.1007/s00339-022-05641-7

    Article  Google Scholar 

  35. Guezmir, A., Rached, H., Bentouaf, A., Caid, M., Benkhettou, N., Rached, D., Sidoumou, M.: Theoretical insight of stabilities and optoelectronic features of Ru-based Heusler alloys: Ab-initio calculations. Comput. Condens. Matter. 28, 1–7 (2021). https://doi.org/10.1016/j.cocom.2021.e00573

    Article  Google Scholar 

  36. Hamioud, F., Tariq, S.: Influence of pressure on optical transparency and high electrical conductivity in CoVSn alloys : DFT study. J. Electron. Mater. 48, 2317–2328 (2019). https://doi.org/10.1007/s11664-019-06976-3

    Article  ADS  Google Scholar 

  37. Paudel, R., Kaphle, G.C., Batouche, M., Zhu, J.: Half-metallicity, magnetism, mechanical, thermal, and phonon properties of FeCrTe and FeCrSe half-Heusler alloys under pressure. Int. J. Quantum. Chem. 120, e26417 (2020). https://doi.org/10.1002/qua.26417

    Article  Google Scholar 

  38. Gupta, Y., Sinha, M.M., Verma, S.S.: Structural and lattice dynamical study of half Heusler alloys RuMnX (X = P, As). AIP. Conf. Proc. 2162, 020003 (2019). https://doi.org/10.1063/1.5130213

    Article  Google Scholar 

  39. Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95, 1–25 (2017). https://doi.org/10.1103/PhysRevB.95.024411

    Article  Google Scholar 

  40. Djaafri, T., Djaafri, A., Elias, A., Murtaza, G., Khenata, R., Ahmed, R., Bin, O.S., Rached, D.: Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds: a first-principles study. Chin. Phys. B. 23, 087103 (2014). https://doi.org/10.1088/1674-1056/23/8/087103

    Article  ADS  Google Scholar 

  41. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. Mater. Phys. 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  42. MedeA. Version 2.14. Material Design and Discovery GmbH (2013). Available from: www.materialsdesign.com/medea

  43. Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. Condens. Matter. Mater. 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  44. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  45. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  ADS  Google Scholar 

  46. Blöchl, P.E., Jepsen, O., Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. 49, 16223 (1994). https://doi.org/10.1103/PhysRevB.49.16223

    Article  ADS  Google Scholar 

  47. Jamal, M., Bilal, M., Ahmad, I., Jalali-Asadabadi, S.: IRelast package. J. Alloys Compd. 735, 569–579 (2018). https://doi.org/10.1016/j.jallcom.2017.10.139

    Article  Google Scholar 

  48. Nawa, K., Miura, Y.: Exploring half-metallic Co-based full Heusler alloys using a DFT+: U method combined with linear response approach. RSC Adv. 9, 30462–30478 (2019). https://doi.org/10.1039/c9ra05212g

    Article  ADS  Google Scholar 

  49. Ma, J., He, J., Mazumdar, D., Munira, K., Keshavarz, S., Lovorn, T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of inverse Heusler compounds for spintronics applications. Phys. Rev. B 98, 1–26 (2018). https://doi.org/10.1103/PhysRevB.98.094410

    Article  Google Scholar 

  50. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. Condens. Matter. Mater. Phys. 66, 1–9 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  Google Scholar 

  51. Slater, J.C.: Atomic shielding constants. Phys. Rev. 36, 57–64 (1930). https://doi.org/10.1103/PhysRev.36.57

    Article  MATH  ADS  Google Scholar 

  52. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899–904 (1938). https://doi.org/10.1103/PhysRev.54.899

    Article  MATH  ADS  Google Scholar 

  53. Continenza, A., Picozzi, S., Geng, W.T., Freeman, A.J.: Coordination and chemical effects on the structural, electronic and magnetic properties in Mn pnictides. Phys. Rev. B 64, 1–7 (2001). https://doi.org/10.1103/PhysRevB.64.085204

    Article  Google Scholar 

  54. Ram, M., Saxena, A., Aly, A.E., Shankar, A.: Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC Adv. 10, 7661–7670 (2020). https://doi.org/10.1039/c9ra09303f

    Article  ADS  Google Scholar 

  55. Toual, Y., Mouchou, S., Azouaoui, A., Harbi, A., Moutaabbid, M., Hourmatallah, A., Bouslykhane, K., Benzakour, N.: First-principles calculations to investigate structural, electronic, magnetic, mechanical and thermodynamic properties of Half-Heusler alloy CoMnTe: Using GGA and GGA+U methods. Mater. Chem. Phys. 307, 128115 (2023). https://doi.org/10.1016/j.matchemphys.2023.128115

    Article  Google Scholar 

  56. Ray, R.B., Kaphle, G.C., Rai, R.K., Yadav, D.K., Paudel, R., Paudyal, D.: Strain induced electronic structure, and magnetic and structural properties in quaternary Heusler alloys ZrRhTiZ (Z = Al, In). J. Alloys Compd. 867, 158906 (2021). https://doi.org/10.1016/j.jallcom.2021.158906

    Article  Google Scholar 

  57. Ghosh, S., Gupta, D.C.: Electronic, magnetic, elastic and thermodynamic properties of Cu2MnGa. J. Magn. Magn. Mater. 411, 120–127 (2016). https://doi.org/10.1016/j.jmmm.2016.03.044

    Article  ADS  Google Scholar 

  58. Born, M., Huang, K., Lax, M.: Dynamical Theory of Crystal Lattices. Am. J. Phys. 23, 474–474 (1955). https://doi.org/10.1119/1.1934059

    Article  ADS  Google Scholar 

  59. Hill, R.: Related content The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. 65, 349–354 (1952)

    Article  ADS  Google Scholar 

  60. Schreiber, E., Anderson, O.L., Soga, N., Bell, J.F.: Elastic constants and their measurement. J. Appl. Mech. 42, 747–748 (1973)

    Article  Google Scholar 

  61. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)

    Article  ADS  Google Scholar 

  62. Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Handbook on elastic constants and moduli of elasticity for metals and nonmetals. Naukova Dumka, Kiev (1982)

    Google Scholar 

  63. Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin. Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the grant from DST (Grant no. SR/NM/NS – 1024/2016), Government of India to establish the cluster computing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskaran Natesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puthusseri, N.N., Natesan, B. Theoretical Investigation of Half-metallicity and Pressure-induced Half-metallic Band Gap in Half Heusler RuMnZ (Z = Si, Ge, Sn, P, As, Sb, Se, and Te) Alloys. J Supercond Nov Magn 36, 1953–1966 (2023). https://doi.org/10.1007/s10948-023-06633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06633-1

Keywords

Navigation