Skip to main content
Log in

Effect of Lithium Substitution on the Structural, Magnetic, and Magnetocaloric Properties of La0.7Sr0.3-xLixMnO3 (0 ≤ x ≤ 0.15)

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, magnetic, and magnetocaloric properties of La0.7Sr0.3-xLixMnO3 (0 ≤ x ≤ 0.15) samples have been investigated. All our samples were synthesized using the sol–gel technique at low temperature. The Rietveld refinement of the X-ray powder diffraction shows that the La0.7Sr0.3-xLixMnO3 compounds crystallize in a rhombohedral system with \(R\overline{3} c\) space group. Magnetization measurements versus temperature showed that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. The Curie temperature, TC, decreases with increasing Li content from 365 K for x = 0 to 194.4 K for x = 0.15. The maximum of the magnetic entropy change, \(\left| {\Delta S_{M}^{Max} } \right|\), under an applied magnetic field change of 2 T is found to be 1.97, 1.05, 1.07, and 1 J kg−1 K−1 for x = 0, 0.05, 0.1, and 0.15 respectively. The relative cooling power reaches 82.1, 80.6, 83.2, and 102.5 Jkg−1 for x = 0, 0.05, 0.1, and 0.15, respectively, under the same magnetic field change of 2 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Glanz, J.: Making a bigger chill with magnets. Science 279, 2045 (1998). https://doi.org/10.1126/science.279.5359.2045

    Article  ADS  Google Scholar 

  2. Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V.K., Gschneidner, K.A., Jr., Osborne, M., Anderson, I.: Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. 43, 1759–1766 (1998). https://doi.org/10.1007/978-1-4757-9047-4_222

    Article  Google Scholar 

  3. Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic. Int. J. Refrig. 26, 622–636 (2003). https://doi.org/10.1016/S0140-7007(03)00048-3

    Article  Google Scholar 

  4. Salazar-Munoz, V.E., Palomares-Sanchez, S.A., Betancourt, I., Torres-Castillo, A.A., Cabal Velarde, J.G., Lobo Guerrero, A.: Magnetic and magnetocaloric properties of a foam composite based on substituted La-manganite in a polyurethane matrix. J. Magn. Magn. Mater. 538, 168296 (2021). https://doi.org/10.1016/j.jmmm.2021.168296

    Article  Google Scholar 

  5. Al-Yahmadi, I.Z., Gismelseed, A.M., Al Ma’Mari, F., Al-Rawas, A.D., Al-Harthi, S.H., Yousif, A.Y., Widatallah, H.M., Elzain, M.E., My, M.T.Z.: Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A=Co, Ni, Zn) perovskite manganites. J. Alloys Comp. 875, 159977 (2021). https://doi.org/10.1016/j.jallcom.2021.159977

    Article  Google Scholar 

  6. Casanova, F., Batlle, X., Labarta, A.: Scaling of the entropy change at the magnetoelastic transition in Gd5(SixGe1-x)4. Phys. Rev. B 66, 212402–212405 (2002). https://doi.org/10.1103/PhysRevB.66.212402

    Article  ADS  Google Scholar 

  7. Zhang, X.Y., Chen, Y., Li, Z.Y.: Large magnetocaloric effect in chromium dioxide with second-order phase transition. J. Phys. D: Appl. Phys. 40, 3243 (2007). https://doi.org/10.1088/0022-3727/40/10/033

    Article  ADS  Google Scholar 

  8. Tishin, A.M., Spichkin, A.M.: The magnetocaloric effect and its applications. Institute of Physics Publishing (2013). https://doi.org/10.1201/9781420033373

  9. Franco, V., Blazquez, J.S., Ingale, B., Conde, A.: The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305 (2012). https://doi.org/10.1146/annurev-matsci-062910-100356

    Article  ADS  Google Scholar 

  10. Gschneider, K.A., Jr., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

    Article  ADS  Google Scholar 

  11. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951). https://doi.org/10.1103/PhysRev.82.403

    Article  ADS  Google Scholar 

  12. Phan, M.H., Tian, S.B., Hoang, D.Q., Yu, S.C., Nguyen, C., Ulyanov, A.N.: Large magnetic-entropy change above 300 K in CMR materials. J. Magn. Magn. Mater. 258–259, 309–311 (2003). https://doi.org/10.1016/S0304-8853(02)01151-4

    Article  ADS  Google Scholar 

  13. Regaieg, Y., Ayadi, F., Monnier, J., Reguer, S., Koubaa, M., Cheikhrouhou, A., Nowak, S., Sicard, L., Ammar-Merah, S.: Magnetocaloric properties of La0.67Ca0.33MnO3 produced by reactive spark plasma sintering and by conventional ceramic route. Mater. Res. Express 1, 046105–046118 (2014). https://doi.org/10.1088/2053-1591/1/4/046105

  14. Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  15. Zhang, P., Lampen, P., Phan, T.L., Yu, S.C., Thanh, T.D., Dan, N.H., Lam, V.D.: Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1-xCaxMnO3 (0.2≤x≤0.4). J. Magn. Magn. Mater. 348, 146–153 (2013). https://doi.org/10.1016/J.JMMM.2013.08.025

    Article  ADS  Google Scholar 

  16. Chatterjee, S., Das, K., Das, I.: Magnetic and magnetocaloric effect study of a polycrystalline Gd0.5Sr0.5−xCaxMnO3 compound. Phys. Chem. Chem. Phys. 24, 8233–8244 (2022). https://doi.org/10.1039/D2CP00114D

    Article  Google Scholar 

  17. Koubaa, M., Cheikhrouhou, W., Cheikhrouhou, A.: Magnetocaloric effect in polycrystalline La0.65Ba0.3M0.05MnO3 (M=Na, Ag, K) manganites. J. Magn. Magn. Mater. 321, 3578–3584 (2009). https://doi.org/10.1016/j.jmmm.2009.05.002

    Article  ADS  Google Scholar 

  18. Cheikhrouhou, W., Koubaa, M., Cheikhrouhou, A.: Effect of monovalent doping on the structural, magnetic and magnetocaloric properties in La0.7M0.2M′0.1MnO3 manganese oxides (M=Sr, Ba and M ′ =Na, Ag, K). Phys. Procedia 2, 989–996 (2009). https://doi.org/10.1016/j.phpro.2009.11.054

    Article  ADS  Google Scholar 

  19. Koubaa, M., Cheikhrouhou, W., Cheikhrouhou, A.: Magnetocaloric effect and magnetic properties of La0.75Ba0.1M0.15MnO3 (M=Na, Ag and K) perovskite manganites. J. Alloys Compd. 479, 65–70 (2009). https://doi.org/10.1016/j.jallcom.2009.01.030

    Article  Google Scholar 

  20. Mehri, A., Cheikhrouhou, W., Koubaa, M., Cheikhrouhou, A.: Magnetic and magnetocaloric properties of monovalent substituted La0.5Ca0.45A0.05MnO3 (A = Na, Ag, K) perovskite manganites. Conf. Ser. Mater. Sci. Eng. 28, 012049 (2012). https://doi.org/10.1088/1757-899X/28/1/012049

    Article  Google Scholar 

  21. Ayadi, F., Cheikhrouhou-Koubaa, W., Koubaa, M., Nowak, S., Sicard, L., Ammar, S., Cheikhrouhou, A.: Effect of synthesis method on structural, magnetic and magnetocaloric properties of La0.7Sr0.2Ag0.1MnO3 manganite. Mater. Chem. Phys. 145, 56–59 (2014). https://doi.org/10.1016/j.matchemphys.2014.01.031

    Article  Google Scholar 

  22. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  23. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  24. Peña, A., Gutiérrez, J., Barandiaran, J.M., Chapman, J.P., Insausti, M., Rojo, T.: Correlation between structure and magnetic properties of Cd-substituted La0.7(Ca0.3−xCdx)MnO3 CMR manganites. J. Solid State Chem. 174, 52–59 (2003). https://doi.org/10.1016/S0022-4596(03)00173-7

    Article  ADS  Google Scholar 

  25. Cheikh-Rouhou Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Structural, magnetotransport, and magnetocaloricproperties of La0.7Sr0.3-xAgxMnO3 perovskite manganites. J. Alloys Compd. 453, 42–48 (2008). https://doi.org/10.1016/j.jallcom.2006.11.185

    Article  Google Scholar 

  26. Coey, J.M.D., Viret, M., von Molnár, S.: Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999). https://doi.org/10.1080/000187399243455

    Article  ADS  Google Scholar 

  27. Goldschmidt, V.M.: Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

    Article  ADS  Google Scholar 

  28. Shen, C.H., Chen, C.C., Liu, R.S., Gundakaram, R., Hu, S.F., Chen, J.M.: Internal chemical pressure effect and magnetic properties of La0.6(Sr0.42-xBax)MnO3. J. Solid State Chem. 15, 117–121 (2001). https://doi.org/10.1006/jssc.2000.8970

    Article  ADS  Google Scholar 

  29. Khattak, C.P., Wang, F.F.Y.: Perovskites and garnets. Handb. Phys. Chem. Rare Earths 3, 525–607 (1979). https://doi.org/10.1016/S0168-1273(79)03012-9

    Article  Google Scholar 

  30. Tokura, Y., Tomioka, Y.: Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999). https://doi.org/10.1016/S0304-8853(99)00352-2

    Article  ADS  Google Scholar 

  31. Taylor, A.: X-ray Metallography. Wiely, New York (1961)

    Google Scholar 

  32. Kharrat, N., Debbebi, I.S., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Sicard, L.: Magnetocaloric effect in La0.67Ba0.33Mn0.95Ni0.05O3 manganite near room temperature. J. Supercond. Nov. Magn. 32, 1241–1251 (2019). https://doi.org/10.1007/s10948-018-4816-3

    Article  Google Scholar 

  33. Soleymani, M., Moheb, A., Joudaki, E.: High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Cent. Eur. J. Chem. 7, 809–817 (2009). https://doi.org/10.2478/s11532-009-0083-2

    Article  Google Scholar 

  34. Cheikh-Rouhou Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Effect of potassium doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.3-xKxMnO3 perovskite manganites. J. Alloys Comp. 470, 42–46 (2009). https://doi.org/10.1016/j.jallcom.2008.03.033

    Article  Google Scholar 

  35. Abdelmoula, N., Reversat, L., Cheikhrouhou, A.: Structural, magnetic and magnetoresistive properties of La0.7Sr0.3-xNaxMnO3 manganites. J. Phys. Condens. Matter 13, 449–458 (2001). https://doi.org/10.1088/0953-8984/13/3/307/meta

    Article  ADS  Google Scholar 

  36. Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995). https://doi.org/10.1103/PhysRevLett.74.5144

    Article  ADS  Google Scholar 

  37. Choura-Maatar, S., M’nassri, R., Cheikhrouhou-Koubaa, M., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Sodium – deficiency effects on the structural, magnetic and magnetocaloric properties of La0.8Na0.2-xxMnO3 (0≤x≤0.15). J. Magn. Magn. Mater. 433, 239–247 (2017). https://doi.org/10.1016/j.jmmm.2017.03.026

    Article  ADS  Google Scholar 

  38. Kolat, V.S., Izgi, T., Kaya, A.O., Bayri, N., Gencer, H., Atalay, S.: Metamagnetic transition and magnetocaloric effect in charge-ordered Pr0.68Ca0.32-xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds. J. Magn. Magn. Mater. 322, 427–433 (2010). https://doi.org/10.1016/j.jmmm.2009.09.071

    Article  ADS  Google Scholar 

  39. Regaieg, Y., Koubaa, M., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Sicard, L., Ammar-Merah, S., Herbst, F.: Structure and magnetocaloric properties of La0.8Ag0.2-xKxMnO3 perovskite manganites. Mater. Chem. Phys. 132, 839–845 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.021

    Article  Google Scholar 

  40. Ben Khlifa, H., Regaieg, Y., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Structural, magnetic and magnetocaloric properties of K-doped Pr0.8Na0.2-xKxMnO3 manganites. J. Alloy. Compd. 650, 676–683 (2015). https://doi.org/10.1016/j.jallcom.2015.07.140

    Article  Google Scholar 

  41. Brion, S., Ciorcas, F., Chouteau, G., Lejay, P., Radaelli, P., Chaillout, C.: Magnetic and electric properties of La1−δMnO3. Phys. Rev. B 59, 1304–1310 (1999). https://doi.org/10.1103/PhysRevB.59.1304

    Article  ADS  Google Scholar 

  42. Banerjee, S.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  43. Dinesen, A.R., Linderoth, S., Moerup, S.: Direct and indirect measurement of the magnetocaloric effect in La0.67Ca0.33−xSrxMnO3 ± δ (x∈ [0: 0.33]). J. Phys. Condens. Matter 17, 6257–6269 (2005). https://doi.org/10.1088/0953-8984/17/39/011

    Article  ADS  Google Scholar 

  44. McMichael, R.D., Ritter, J.J., Shull, R.D.: Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J. Appl. Phys. 73, 6946–6948 (1993). https://doi.org/10.1063/1.352443

    Article  ADS  Google Scholar 

  45. Yang, H., Zhu, Y.H., Xian, T., Jiang, J.L.: Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J. Alloys Compd. 555, 150–155 (2013). https://doi.org/10.1016/j.jallcom.2012.11.200

    Article  Google Scholar 

  46. Ben Rejeb, M., Ben Osman, C., Regaieg, Y., Marzouki-Ajmi, A., Cheikhrouhou-Koubaa, W., Ammar-Merah, S., Cheikhrouhou, A., Mhiri, T.: A comparative study of La0.65Ca0.2(Na0.5K0.5)0.15MnO3 compound synthesized by solid-state and sol-gel process. J. Alloys Compd. 695, 2597–2604 (2017). https://doi.org/10.1016/j.jallcom.2016.11.166

    Article  Google Scholar 

  47. Ben Khlifa, H., M’nassri, R., Tarhouni, S., Regaieg, Y., Cheikhrouhou-Koubaa, W., Chniba-Boudjada, N., Cheikhrouhou, A.: Critical behaviour and filed dependence of magnetic entropy change in K-doped manganites Pr0.8Na0.2-xKxMnO3 (x = 0.10 and 0.15). J. Alloys Compd. 257, 9–18 (2018). https://doi.org/10.1016/j.jssc.2017.09.013

    Article  Google Scholar 

  48. Zhang, X.X., Wen, G.H., Wang, F.W., Wang, W.H., Yu, C.H.: Magnetic entropy change in Fe-based compound LaFe10.6Si2.4. Appl. Phys. Lett. 77, 3072–3074 (2000). https://doi.org/10.1063/1.1323993

    Article  ADS  Google Scholar 

  49. Gschneidner, K.A., Pecharsky, V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  ADS  Google Scholar 

  50. Regaieg, Y., Koubaa, M., Cheikhrouhou Koubaa, W., Cheikhrouhou, A., Mhiri, T.: Magnetocaloric effect above room temperature in the K-doped La0.8Na0.2-xKxMnO3 manganites. J. Alloys Compd. 502, 270–274 (2010). https://doi.org/10.1016/j.jallcom.2010.04.167

    Article  Google Scholar 

  51. Felhi, R., Koubaa, M., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Structural, magnetic, magnetocaloric and critical behavior investigations ofLa0.65Dy0.05Sr0.3MnO3 manganite. J. Alloys Compd. 726, 1236–1245 (2017). https://doi.org/10.1016/j.jallcom.2017.08.080

    Article  Google Scholar 

  52. Pekala, M., Drozd, V., Fagnard, J.F., Vanderbemden, P.H.: Magnetocaloric effect in nano- and polycrystalline manganites La0.5Ca0.5MnO3. J. Alloys Compd. 507, 350–355 (2010). https://doi.org/10.1016/j.jallcom.2010.07.165

    Article  Google Scholar 

  53. Yu Dan’kov, S., Tishin, A.M., Pecharsky, V.K., Gschneidner, K.A.: Magnetic phase transitions and the magnetothermal properties of gadolinium. J. Phys. Rev. B 57, 3478–3490 (1998). https://doi.org/10.1103/PhysRevB.57.3478

    Article  ADS  Google Scholar 

  54. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon Press, New York (1958)

    MATH  Google Scholar 

  55. Amaral, V.S., Amaral, J.S.: Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J. Magn. Magn. Mater. 272–276, 2104–2105 (2004). https://doi.org/10.1016/j.jmmm.2003.12.870

    Article  ADS  Google Scholar 

  56. Amaral, J.S., Reis, M.S., Amaral, V.S., Mendonça, T.M., Araủjo, J.P., Sả, M.A., Tavares, P.B., Vieira, J.M.: Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites. J. Magn. Magn. Mater. 290–291, 686–689 (2005). https://doi.org/10.1016/j.jmmm.2004.11.337

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cheikhrouhou-Koubaa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmani, I., Regaieg, Y., Ayadi, F. et al. Effect of Lithium Substitution on the Structural, Magnetic, and Magnetocaloric Properties of La0.7Sr0.3-xLixMnO3 (0 ≤ x ≤ 0.15). J Supercond Nov Magn 36, 1143–1152 (2023). https://doi.org/10.1007/s10948-023-06554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06554-z

Keywords

Navigation