Skip to main content
Log in

Phase and Thermal-Driven Transport Across T-Shaped Double Quantum Dot Josephson Junction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The phase- and thermal-driven transport properties of the T-shaped uncorrelated double quantum dot Josephson junction are analyzed by using Keldysh non-equilibrium Green’s function equation of motion technique. In this setup, we have shown that the side-attached quantum dot provides an additional route for electron transmission which is affecting the transport properties by adjusting the interdot hopping between the main dot and the side dot. We began with investigating the impact of interdot hopping on Andreev bound states and Josephson supercurrent. When a small thermal bias is applied across the superconducting leads, the system exhibits a finite thermal response which is primarily due to the thermally induced, quasi-particle current. The behavior of the Josephson supercurrent and the quasi-particle current flowing through the quantum dots is examined for various interdot hopping and thermal biasing. Finally, the system is considered in an open-circuit configuration where the thermally driven quasi-particle current is compensated by the phase-driven Josephson supercurrent and the thermophase effect is observed. The effect of interdot hopping and the position of quantum dot energy level on the thermophase Seebeck coefficient is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  ADS  MATH  Google Scholar 

  2. Anderson, P.W.: How Josephson discovered his effect. Phys. Today 23(11), 23–29 (1970). https://doi.org/10.1063/1.3021826

    Article  Google Scholar 

  3. Kouwenhoven, L.P., Austing, D., Tarucha, S.: Few-electron quantum dots. Rep. Prog. Phys. 64(6), 701 (2001). https://doi.org/10.1088/0034-4885/64/6/201

    Article  ADS  Google Scholar 

  4. Kastner, M.A.: Artificial atoms. Phys. Today 46, (1993). https://doi.org/10.1063/1.881393

  5. Rozhkov, A., Arovas, D.P.: Josephson coupling through a magnetic impurity. Phys. Rev. Lett. 82(13), 2788 (1999). https://doi.org/10.1103/PhysRevLett.82.2788

    Article  ADS  Google Scholar 

  6. Vecino, E., Martín-Rodero, A., Yeyati, A.L.: Josephson current through a correlated quantum level: Andreev States and \(\pi\) junction behavior. Phys. Rev. B 68(3), 035105 (2003). https://doi.org/10.1103/PhysRevB.68.035105

  7. Choi, M.-S., Lee, M., Kang, K., Belzig, W.: Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70(2), 020502 (2004). https://doi.org/10.1103/PhysRevB.70.020502

  8. Lim, J.S., Choi, M.-S.: Andreev bound states in the Kondo quantum dots coupled to superconducting leads. J. Phys.: Condens. Matter 20(41), 415225 (2008). https://doi.org/10.1088/0953-8984/20/41/415225

  9. Zhu, Y., Sun, Q.-F., Lin, T.-H.: Andreev bound states and the \(\pi\)-junction transition in a superconductor/quantum-dot/superconductor system. J. Phys.: Condens. Matter 13(39), 8783 (2001). https://doi.org/10.1088/0953-8984/13/39/307

    Article  ADS  Google Scholar 

  10. Karrasch, C., Oguri, A., Meden, V.: Josephson current through a single Anderson impurity coupled to BCS leads. Phys. Rev. B 77(2), 024517 (2008). https://doi.org/10.1103/PhysRevB.77.024517

  11. Vodolazov, D., Peeters, F.: Superconducting rectifier based on the asymmetric surface barrier effect. Phys. Rev. B 72(17), 172508 (2005). https://doi.org/10.1103/PhysRevB.72.172508

  12. Tanuma, Y., Tanaka, Y., Kusakabe, K.: Josephson current through a nanoscale quantum dot contacted by conventional superconductors. Physica E 40(2), 257–260 (2007). https://doi.org/10.1016/j.physe.2007.06.008

    Article  ADS  Google Scholar 

  13. Dhyani, A., Tewari, B., et al.: Interplay of the single particle and Josephson Cooper pair tunneling on supercurrent across the superconducting quantum dot junction. Physica E 42(2), 162–166 (2009). https://doi.org/10.1016/j.physe.2009.09.018

    Article  ADS  Google Scholar 

  14. Van Dam, J.A., Nazarov, Y.V., Bakkers, E.P., De Franceschi, S., Kouwenhoven, L.P.: Supercurrent reversal in quantum dots. Nature 442(7103), 667–670 (2006). https://doi.org/10.1038/nature05018

    Article  ADS  Google Scholar 

  15. Grove-Rasmussen, K., Jørgensen, H.I., Lindelof, P.: Kondo resonance enhanced supercurrent in single wall carbon nanotube Josephson junctions. New J. Phys. 9(5), 124 (2007). https://doi.org/10.1021/nl071152w

    Article  ADS  Google Scholar 

  16. Eichler, A., Weiss, M., Oberholzer, S., Schönenberger, C., Yeyati, A.L., Cuevas, J., Martín-Rodero, A.: Even-odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99(12), 126602 (2007). https://doi.org/10.1103/PhysRevLett.99.126602

  17. Ma, Y., Cai, T., Han, X., Hu, Y., Zhang, H., Wang, H., Sun, L., Song, Y., Duan, L.: Andreev bound states in a few-electron quantum dot coupled to superconductors. Phys. Rev. B 99(3), 035413 (2019). https://doi.org/10.1103/PhysRevB.99.035413

  18. Pillet, J.-D., Joyez, P., Goffman, M., et al.: Tunneling spectroscopy of a single quantum dot coupled to a superconductor: from Kondo ridge to Andreev bound states. Phys. Rev. B 88(4), 045101 (2013). https://doi.org/10.1103/PhysRevB.88.045101

  19. Lee, E.J., Jiang, X., Houzet, M., Aguado, R., Lieber, C.M., De Franceschi, S.: Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 9(1), 79–84 (2014). https://doi.org/10.1038/nnano.2013.267

    Article  ADS  Google Scholar 

  20. Delagrange, R., Weil, R., Kasumov, A., Ferrier, M., Bouchiat, H., Deblock, R.: 0-\(\pi\) quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy. Phys. Rev. B 93(19), 195437 (2016). https://doi.org/10.1016/j.physb.2017.09.034

  21. Szombati, D., Nadj-Perge, S., Car, D., Plissard, S., Bakkers, E., Kouwenhoven, L.: Josephson \(\phi\)0-junction in nanowire quantum dots. Nat. Phys. 12(6), 568–572 (2016). https://doi.org/10.1038/nphys3742

    Article  Google Scholar 

  22. Cheng, S.-G., Sun, Q.-F.: Josephson current transport through t-shaped double quantum dots. J. Phys.: Condens. Matter 20(50), 505202 (2008). https://doi.org/10.1088/0953-8984/20/50/505202

  23. Chi, F., Li, S.-S.: Current-voltage characteristics in strongly correlated double quantum dots. J. Appl. Phys. 97(12), 123704 (2005). https://doi.org/10.1063/1.1939065

  24. Zhu, Y., Sun, Q.-F., Lin, T.-H.: Probing spin states of coupled quantum dots by a DC Josephson current. Phys. Rev. B 66(8), 085306 (2002). https://doi.org/10.1103/PhysRevB.66.085306

  25. López, R., Choi, M.-S., Aguado, R.: Josephson current through a Kondo molecule. Phys. Rev. B 75(4), 045132 (2007). https://doi.org/10.1103/PhysRevB.75.045132

  26. Droste, S., Andergassen, S., Splettstoesser, J.: Josephson current through interacting double quantum dots with spin-orbit coupling. J. Phys.: Condens. Matter 24(41), 415301 (2012). https://doi.org/10.1088/0953-8984/24/41/415301

  27. Rajput, G., Kumar, R., et al.: Tunable Josephson effect in hybrid parallel coupled double quantum dot-superconductor tunnel junction. Superlattices Microstruct. 73, 193–202 (2014). https://doi.org/10.1016/j.spmi.2014.05.029

    Article  ADS  Google Scholar 

  28. Lee, M., López, R., Aguado, R., Choi, M.-S., et al.: Josephson current in strongly correlated double quantum dots. Phys. Rev. Lett. 105(11), 116803 (2010). https://doi.org/10.1103/PhysRevLett.105.116803

  29. Saldaña, J.E., Vekris, A., Steffensen, G., Žitko, R., Krogstrup, P., Paaske, J., Grove-Rasmussen, K., Nygård, J.: Supercurrent in a double quantum dot. Phys. Rev. Lett. 121(25), 257701 (2018). https://doi.org/10.1103/PhysRevLett.121.257701

  30. De Franceschi, S., Kouwenhoven, L., Schönenberger, C., Wernsdorfer, W.: Hybrid superconductor-quantum dot devices. Nat. Nanotechnol. 5(10), 703–711 (2010). https://doi.org/10.1038/nnano.2010.173

    Article  ADS  Google Scholar 

  31. Martín-Rodero, A., Levy Yeyati, A.: Josephson and Andreev transport through quantum dots. Adv. Phys. 60(6), 899–958 (2011). https://doi.org/10.1038/nnano.2010.173

    Article  ADS  Google Scholar 

  32. Meden, V.: The Anderson-Josephson quantum dot-a theory perspective. J. Phys.: Condens. Matter 31(16), 163001 (2019). https://doi.org/10.1088/1361-648X/aafd6a

  33. Guttman, G.D., Nathanson, B., Ben-Jacob, E., Bergman, D.J.: Thermoelectric and thermophase effects in Josephson junctions. Phys. Rev. B 55(18), 12691 (1997). https://doi.org/10.1103/PhysRevB.55.12691

    Article  ADS  Google Scholar 

  34. Giazotto, F., Robinson, J., Moodera, J., Bergeret, F.: Proposal for a phase-coherent thermoelectric transistor. Appl. Phys. Lett. 105(6), 062602 (2014). https://doi.org/10.1063/1.4893443

  35. Martínez-Pérez, M.J., Fornieri, A., Giazotto, F.: Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotechnol. 10(4), 303–307 (2015). https://doi.org/10.1038/nnano.2015.11

    Article  ADS  Google Scholar 

  36. Giazotto, F., Heikkilä, T., Bergeret, F.: Very large thermophase in ferromagnetic Josephson junctions. Phys. Rev. Lett. 114(6), 067001 (2015). https://doi.org/10.1103/PhysRevLett.114.067001

  37. Marchegiani, G., Virtanen, P., Giazotto, F., Campisi, M.: Self-oscillating Josephson quantum heat engine. Phys. Rev. Appl. 6(5), 054014 (2016). https://doi.org/10.1103/PhysRevApplied.6.054014

  38. Marchegiani, G., Braggio, A., Giazotto, F.: Phase-tunable thermoelectricity in a Josephson junction. Physical Review Research 2(4), 043091 (2020). https://doi.org/10.1103/PhysRevResearch.2.043091

  39. Bauer, A.G., Sothmann, B.: Phase-dependent transport in thermally driven superconducting single-electron transistors. Phys. Rev. B 104(19), 195418 (2021). https://doi.org/10.1103/PhysRevB.104.195418

  40. Kleeorin, Y., Meir, Y., Giazotto, F., Dubi, Y.: Large tunable thermophase in superconductor-quantum dot-superconductor Josephson junctions. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep35116

    Article  Google Scholar 

  41. Kamp, M., Sothmann, B.: Phase-dependent heat and charge transport through superconductor-quantum dot hybrids. Phys. Rev. B 99(4), 045428 (2019). https://doi.org/10.1103/PhysRevB.99.045428

  42. Krawiec, M.: Thermoelectric transport through a quantum dot coupled to a normal metal and BCS superconductor. Acta Physica Polonica A 114 (2008). 10.12693/APhysPolA.114.115

  43. Hwang, S.-Y., López, R., Sánchez, D.: Cross thermoelectric coupling in normal-superconductor quantum dots. Phys. Rev. B 91(10), 104518 (2015). https://doi.org/10.1103/PhysRevB.91.104518

  44. Verma, S., Singh, A.: Non-equilibrium thermoelectric transport across normal metal-quantum dot-superconductor hybrid system within the coulomb blockade regime. J. Phys.: Condens. Matter 34(15), 155601 (2022). https://doi.org/10.1088/1361-648X/ac4ced

  45. Hwang, S.-Y., Sánchez, D., López, R.: A hybrid superconducting quantum dot acting as an efficient charge and spin Seebeck diode. New J. Phys. 18(9), 093024 (2016). https://doi.org/10.1088/1367-2630/18/9/093024

  46. Hwang, S.-Y., López, R., Sánchez, D.: Large thermoelectric power and figure of merit in a ferromagnetic-quantum dot-superconducting device. Phys. Rev. B 94(5), 054506 (2016). https://doi.org/10.1103/PhysRevB.94.054506

  47. Hwang, S.-Y., Sánchez, D., López, R.: Nonlinear electric and thermoelectric Andreev transport through a hybrid quantum dot coupled to ferromagnetic and superconducting leads. The European Physical Journal B 90(10), 1–7 (2017). https://doi.org/10.1140/epjb/e2017-80242-1

    Article  Google Scholar 

  48. Trocha, P., Barnaś, J.: Spin-dependent thermoelectric phenomena in a quantum dot attached to ferromagnetic and superconducting electrodes. Phys. Rev. B 95(16), 165439 (2017). https://doi.org/10.1103/PhysRevB.95.165439

  49. Xu, W.-P., Zhang, Y.-Y., Wang, Q., Li, Z.-J., Nie, Y.-H.: Thermoelectric effects in triple quantum dots coupled to a normal and a superconducting leads. Phys. Lett. A 380(7–8), 958–964 (2016). https://doi.org/10.1016/j.physleta.2015.12.032

    Article  ADS  Google Scholar 

  50. Yao, H., Zhang, C., Niu, P.-B., Li, Z.-J., Nie, Y.-H.: Enhancement of charge and spin Seebeck effect in triple quantum dots coupling to ferromagnetic and superconducting electrodes. Phys. Lett. A 382(44), 3220–3229 (2018). https://doi.org/10.1016/j.physleta.2018.08.033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wysokiński, K.I.: Thermoelectric transport in the three terminal quantum dot. J. Phys.: Condens. Matter 24(33), 335303 (2012). https://doi.org/10.1088/0953-8984/24/33/335303

  52. Michałek, G., Urbaniak, M., Bułka, B., Domański, T., Wysokiński, K.: Local and nonlocal thermopower in three-terminal nanostructures. Phys. Rev. B 93(23), 235440 (2016). https://doi.org/10.1103/PhysRevB.93.235440

  53. Hussein, R., Governale, M., Kohler, S., Belzig, W., Giazotto, F., Braggio, A.: Nonlocal thermoelectricity in a cooper-pair splitter. Phys. Rev. B 99(7), 075429 (2019). https://doi.org/10.1103/PhysRevB.99.075429

  54. Guttman, G.D., Nathanson, B., Ben-Jacob, E., Bergman, D.J.: Phase-dependent thermal transport in Josephson junctions. Phys. Rev. B 55(6), 3849 (1997). https://doi.org/10.1103/PhysRevB.55.3849

    Article  ADS  Google Scholar 

  55. Haug, H., Jauho, A.-P., et al: Quantum Kinetics in Transport and Optics of Semiconductors vol. 2. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-73564-9

  56. Keldysh, L.V., et al.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20(4), 1018–1026 (1965)

    MathSciNet  Google Scholar 

  57. Zubarev, D.N.: Double-time green functions in statistical physics. Soviet Physics Uspekhi 3(3), 320 (1960). https://doi.org/10.1070/pu1960v003n03abeh003275

    Article  ADS  MathSciNet  Google Scholar 

  58. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68(16), 2512 (1992). https://doi.org/10.1103/PhysRevLett.68.2512

    Article  ADS  Google Scholar 

  59. Kang, K.: Transport through an interacting quantum dot coupled to two superconducting leads. Phys. Rev. B 57(19), 11891 (1998). https://doi.org/10.1103/PhysRevB.57.11891

    Article  ADS  Google Scholar 

  60. Giazotto, F., Heikkilä, T.T., Luukanen, A., Savin, A.M., Pekola, J.P.: Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78(1), 217 (2006). https://doi.org/10.1103/RevModPhys.78.217

    Article  ADS  Google Scholar 

  61. Quan, H., Wang, Y., Liu, Y.-X., Sun, C., Nori, F.: Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97(18), 180402 (2006). https://doi.org/10.1103/PhysRevLett.97.180402

  62. Martínez-Pérez, M., Solinas, P., Giazotto, F.: Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175(5), 813–837 (2014). https://doi.org/10.1007/s10909-014-1132-6

    Article  ADS  Google Scholar 

  63. Fornieri, A., Blanc, C., Bosisio, R., D’ambrosio, S., Giazotto, F.: Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nat. Nanotechnol. 11(3), 258–262 (2016). https://doi.org/10.1038/nnano.2015.281

    Article  ADS  Google Scholar 

Download references

Funding

This study was financially supported by the research project DST-SER-1644-PHY 2021-22. Bhupendra Kumar was financially supported by the Ministry of Education (MoE), India, in the form of a Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Verma, S. & Ajay Phase and Thermal-Driven Transport Across T-Shaped Double Quantum Dot Josephson Junction. J Supercond Nov Magn 36, 831–841 (2023). https://doi.org/10.1007/s10948-023-06526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06526-3

Keywords

Navigation