Skip to main content
Log in

The Superconducting d-wave Pairing and Antiferromagnetic Order on the Coupled Hubbard Ladders: A Quantum Monte Carlo Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using determinant quantum Monte Carlo algorithm, we study the superconducting d-wave pairing and antiferromagnetic order on the coupled Hubbard ladders. With the presence of the next-nearest-neighbor hopping \(t'=-0.25\), we find that, when the hopping strength among ladders decreases, the d-wave pairing is firstly enhanced and then gets suppressed, showing an optimal hopping inhomogeneity for the d-wave pairing. Without the next-nearest-neighbor hopping, however, the d-wave pairing is suppressed monotonically, i.e., no optimal inhomogeneity exists. We also measure the antiferromagnetic structure factor, which also presents an optimal inhomogeneity with the next-nearest-neighbor hopping \(t'=-0.25\), and no such optimal inhomogeneity when \(t'=0.0\). The effect of different temperature, interaction strength, electron density, and lattice size is carefully studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bednorz, J.G., Muller, K.A.: Possible high T\(_c\) superconductivity in the Ba-La-Cu-O system. Z. Phys. B: Condens. Matter 64, 189 (1986). https://doi.org/10.1007/BF01303701

  2. Scalapino, D.J.: A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383 (2012). https://doi.org/10.1103/RevModPhys.84.1383

    Article  ADS  Google Scholar 

  3. Shen, Z.X., Dessau, D.S., Wells, B.O., King, D.M., Spicer, W.E., Arko, A.J., Marshall, D., Lombardo, L.W., Kapitulnik, A., Dickinson, P., Doniach, S., DiCarlo, J., Loeser, T., Park, C.H.: Anomalously large gap anisotropy in the a-b plane of bi\(_2\)sr\(_2\)cacu\(_2\)o\(_{8+\delta }\). Phys. Rev. Lett. 70, 1553 (1993). https://doi.org/10.1103/PhysRevLett.70.1553

  4. Vishik, I.M., Lee, W.S., Schmitt, F., Moritz, B., Sasagawa, T., Uchida, S., Fujita, K., Ishida, S., Zhang, C., Devereaux, T.P., Shen, Z.X.: Doping-dependent nodal fermi velocity of the high-temperature superconductor bi\(_2\)sr\(_2\)cacu\(_2\)o\(_{8+\delta }\) revealed using high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 207002 (2010). https://doi.org/10.1103/PhysRevLett.104.207002

  5. Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204

    Article  ADS  Google Scholar 

  6. Qin, M., Schafer, T., Andergassen, S., Corboz, P., Gull, E.: The Hubbard model: a computational perspective. Annu. Rev. Condens. Matter Phys. 13, 275 (2022). https://doi.org/10.1146/annurev-conmatphys-090921-033948

    Article  ADS  Google Scholar 

  7. Arovas, D.P., Berg, E., Kivelson, S.A., Raghu, S.: The Hubbard model. Annu. Rev. Condens. Matter Phys. 13, 239 (2022). https://doi.org/10.1146/annurev-conmatphys-031620-102024

    Article  ADS  Google Scholar 

  8. Anderson, P.W.: The resonating valence bond state in La\(_2\)CuO\(_4\) and superconductivity. Science 235, 1196 (1987). https://doi.org/10.1126/science.235.4793.1196

  9. Zhang, F.C., Rice, T.M.: Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988). https://doi.org/10.1103/PhysRevB.37.3759

    Article  ADS  Google Scholar 

  10. White, S.R., Scalapino, D.J., Sugar, R.L., Loh, E.Y., Gubernatis, J.E., Scalettar, R.T.: Numerical study of the two-dimensional Hubbard model. Phys. Rev. B 40, 506 (1989). https://doi.org/10.1103/PhysRevB.40.506

    Article  ADS  Google Scholar 

  11. Halboth, C.J., Metzner, W.: d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162 (2000). https://doi.org/10.1103/PhysRevLett.85.5162

    Article  ADS  Google Scholar 

  12. Honerkamp, C., Salmhofer, M., Furukawa, N., Rice, T.M.: Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering. Phys. Rev. B 63, 035109 (2001). https://doi.org/10.1103/PhysRevB.63.035109

  13. Paramekanti, A., Randeria, M., Trivedi, N.: High-T\(_c\) superconductors: a variational theory of the superconducting state. Phys. Rev. B 70, 054504 (2004). https://doi.org/10.1103/PhysRevB.70.054504

  14. Maier, T.A., Jarrell, M., Schulthess, T.C., Kent, P.R.C., White, J.B.: Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model. Phys. Rev. Lett. 95, 237001 (2005). https://doi.org/10.1103/PhysRevLett.95.237001

  15. Senechal, D., Lavertu, P.L., Marois, M.A., Tremblay, A.M.S.: Competition between antiferromagnetism and superconductivity in high-T\(_c\) cuprates. Phys. Rev. Lett. 94, 156404 (2005). https://doi.org/10.1103/PhysRevLett.94.156404

  16. Maier, T.A., Jarrell, M.S., Scalapino, D.J.: Pairing interaction in the two-dimensional Hubbard model studied with a dynamic cluster quantum Monte Carlo approximation. Phys. Rev. B 74, 094513 (2006). https://doi.org/10.1103/PhysRevB.74.094513

    Article  ADS  Google Scholar 

  17. Aichhorn, M., Arrigoni, E., Potthoff, M., Hanke, W.: Antiferromagnetic to superconducting phase transition in the hole- and electron-doped Hubbard model at zero temperature. Phys. Rev. B 74, 024508 (2006). https://doi.org/10.1103/PhysRevB.74.024508

    Article  ADS  Google Scholar 

  18. Tocchio, L.F., Becca, F., Parola, A., Sorella, S.: Role of backflow correlations for the nonmagnetic phase of the \(t-t^{\prime }\) Hubbard model. Phys. Rev. B 78, 041101(R) (2008). https://doi.org/10.1103/PhysRevB.78.041101

  19. S. S. Kancharla, B. Kyung, D. Senechal M. Civelli, M. Capone, G. Kotliar, A. M. S. Tremblay, Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators. Phys. Rev. B 77, 184516 (2008). https://doi.org/10.1103/PhysRevB.77.184516

  20. Zhai, H., Wang, F., Lee, D.H.: Antiferromagnetically driven electronic correlations in iron pnictides and cuprates. Phys. Rev. B 80, 064517 (2009). https://doi.org/10.1103/PhysRevB.80.064517

    Article  ADS  Google Scholar 

  21. Raghu, S., Kivelson, S.A., Scalapino, D.J.: Superconductivity in the repulsive Hubbard model: an asymptotically exact weak-coupling solution. Phys. Rev. B 81, 237001 (2010). https://doi.org/10.1103/PhysRevB.81.224505

  22. Dagotto, E.: Complexity in strongly correlated electronic systems. Science 309, 257 (2005). https://doi.org/10.1126/science.1107559

    Article  ADS  Google Scholar 

  23. Maier, T.A., Alvarez, G., Summers, M., Schulthess, T.C.: Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: interplay between inhomogeneities and the superconducting state. Phys. Rev. Lett. 104, 247001 (2010). https://doi.org/10.1103/PhysRevLett.104.247001

  24. Jiang, H.-C., Kivelson, S.A.: Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl. Acad. Sci. 119, e2109406119 (2022). https://doi.org/10.1073/pnas.2109406119

    Article  Google Scholar 

  25. Tranquada, J., Sternlieb, B., Axe, J., Nakamura, Y., Uchida, S.: Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561 (1995). https://doi.org/10.1038/375561a0

    Article  ADS  Google Scholar 

  26. J. Tranquada, J. Axe, N. Ichikawa, A. Moodenbaugh, Y. Nakamura S. Uchida, Coexistence of, and competition between, superconductivity and charge-stripe order in La\(_{1.6-x}\)Nd\(_{0.4}\)Sr\(_x\)CuO\(_4\). Phys. Rev. Lett. 78, 338 (1997). https://doi.org/10.1103/PhysRevLett.78.338

  27. Wu, T., Mayaffre, H., Krämer, S., Horvatić, M., Berthier, C., Hardy, W., Liang, R., Bonn, D., Julien, M.-H.: Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{7+y}\). Nature 477, 191 (2011). https://doi.org/10.1038/nature10345

  28. Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N., De Luca, G., Frano, A., Hawthorn, D., He, F., et al.: Long-range incommensurate charge fluctuations in (Y, Nd) Ba\(_2\)Cu\(_3\)O\(_{6+x}\). Science 337, 821 (2012). https://doi.org/10.1126/science.1223532

  29. Achkar, A.J., Sutarto, R., Mao, X., He, F., Frano, A., Blanco-Canosa, S., Tacon, M., Ghiringhelli, G., Braicovich, L., Minola, M., Sala, M.M., Mazzoli, C., Liang, R., Bonn, D.A., Hardy, W.N., Keimer, B., Sawatzky, G.A., Hawthorn, D.G.: Distinct charge orders in the planes and chains of ortho-III-ordered YBa\(_2\)Cu\(_3\)O\(_{6+\delta }\) superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012). https://doi.org/10.1103/PhysRevLett.109.167001

  30. J. Chang, E. Blackburn, A. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. Bonn, W. Hardy, A. Watenphul, et al., Direct observation of competition between superconductivity and charge density wave order in YBa\(_2\)Cu\(_3\)O\(_{6.67}\). Nature Physics 8, 871 (2012). https://doi.org/10.1038/nphys2456

  31. Vinograd, I., Zhou, R., Hirata, M., Wu, T., Mayaffre, H., Kramer, S., Liang, R.X., Hardy, W.N., Bonn, D.A., Julien, M.H.: Locally commensurate charge-density wave with three-unit-cell periodicity in YBa\(_2\)Cu\(_3\)O\(_y\). Nat. Commun. 12, 1 (2021). https://doi.org/10.1038/s41467-021-2314

  32. Valla, T., Fedorov, A., Lee, J., Davis, J., Gu, G.: The ground state of the pseudogap in cuprate superconductors. Science 314, 1914 (2006). https://doi.org/10.1126/science.1134742

    Article  ADS  Google Scholar 

  33. J. M. Tranquada, G. D. Gu, M. Hücker, Q. Jie, H. J. Kang, R. Klingeler, Q. Li, N. Tristan, J. S. Wen, G. Y. Xu, Z. J. Xu, J. a. M. Zhou, Evidence for unusual superconducting correlations coexisting with stripe order in La\(_{1.875}\)Ba\(_{0.125}\)CuO\(_4\). Phys. Rev. B 78, 174529 (2008). https://doi.org/10.1103/PhysRevB.78.174529

  34. Aryanpour, K., Dagotto, E.R., Mayr, M., Paiva, T., Pickett, W.E., Scalettar, R.T.: Effect of inhomogeneity on s-wave superconductivity in the attractive Hubbard model. Phys. Rev. B 73, 104518 (2006). https://doi.org/10.1103/PhysRevB.73.104518

    Article  ADS  Google Scholar 

  35. Tsai, W.F., Kivelson, S.A.: Superconductivity in inhomogeneous Hubbard models. Phys. Rev. B 73, 214510 (2006). https://doi.org/10.1103/PhysRevB.73.214510

    Article  ADS  Google Scholar 

  36. Yao, H., Tsai, W.F., Kivelson, S.A.: Myriad phases of the checkerboard Hubbard model. Phys. Rev. B 76, 161104 (2007). https://doi.org/10.1103/PhysRevB.76.161104

    Article  ADS  Google Scholar 

  37. Aryanpour, K., Paiva, T., Pickett, W.E., Scalettar, R.T.: s-wave superconductivity phase diagram in the inhomogeneous two-dimensional attractive Hubbard model. Phys. Rev. B 76, 184521 (2007). https://doi.org/10.1103/PhysRevB.76.184521

    Article  ADS  Google Scholar 

  38. Doluweera, D.G.S.P., Macridin, A., Maier, T.A., Jarrell, M., Pruschke, T.: Suppression of d-wave superconductivity in the checkerboard Hubbard model. Phys. Rev. B 78, 020504 (2008). https://doi.org/10.1103/PhysRevB.78.020504

    Article  ADS  Google Scholar 

  39. Mondaini, R., Ying, T., Paiva, T., Scalettar, R.T.: Determinant quantum Monte Carlo study of the enhancement of d-wave pairing by charge inhomogeneity. Phys. Rev. B 86, 184506 (2012). https://doi.org/10.1103/PhysRevB.86.184506

  40. J. R. Schrieffer, J. S. Brooks, Handbook of high-temperature superconductivity. Springer, New York (2007). https://www.springer.com/gp/book/9780387350714

  41. Tsai, W.F., Yao, H., Lauchli, A., Kivelson, S.A.: Optimal inhomogeneity for superconductivity: finite-size studies. Phys. Rev. B 77, 214502 (2008). https://doi.org/10.1103/PhysRevB.77.214502

  42. Baruch, S., Orgad, D.: Contractor-renormalization study of Hubbard plaquette clusters. Phys. Rev. B 82, 134537 (2010). https://doi.org/10.1103/PhysRevB.82.134537

    Article  ADS  Google Scholar 

  43. Karakonstantakis, G., Berg, E., White, S.R., Kivelson, S.A.: Enhanced pairing in the checkerboard Hubbard ladder. Phys. Rev. B 83, 054508 (2011). https://doi.org/10.1103/PhysRevB.83.054508

    Article  ADS  Google Scholar 

  44. Ying, T., Mondaini, R., Sun, X.D., Paiva, T., Fye, R.M., Scalettar, R.T.: Determinant quantum Monte Carlo study of d-wave pairing in the plaquette Hubbard Hamiltonian. Phys. Rev. B 90, 075121 (2014). https://doi.org/10.1103/PhysRevB.90.075121

  45. Chakraborty, S., Senechal, D., Tremblay, A.M.S.: d-wave superconductivity on the checkerboard Hubbard model at weak and strong coupling. Phys. Rev. B 84, 054545 (2011). https://doi.org/10.1103/PhysRevB.84.054545

    Article  ADS  Google Scholar 

  46. Dagotto, E., Riera, J., Scalapino, D.: Superconductivity in ladders and coupled planes. Phys. Rev. B 45, 5744(R) (1992). https://doi.org/10.1103/PhysRevB.45.5744

    Article  ADS  Google Scholar 

  47. T. M. Rice, S. Gopalan, M. Sigrist, Superconductivity, spin gaps and Luttinger liquids in a class of cuprates. EPL (Europhysics Letters) 23, 445 (1993). https://iopscience.iop.org/article/10.1209/0295-5075/23/6/011

  48. Dagotto, E., Rice, T.M.: Surprises on the way from one- to two-dimensional quantum magnets: the ladder materials. Science 271, 618 (1996). https://doi.org/10.1126/science.271.5249.618

    Article  ADS  Google Scholar 

  49. Vuletic, T., Korin-Hamzic, B., Ivek, T., Tomic, S., Gorshunov, B., Dressel, M., Akimitsu, J.: The spin-ladder and spin-chain system (La, Y, Sr, Ca)\(_{14}\)Cu\(_{24}\)O\(_{41}\): electronic phases, charge and spin dynamics. Phys. Rep. 428, 169 (2006). https://doi.org/10.1016/j.physrep.2006.01.005

  50. M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mori, K. Kinoshita, Superconductivity in the ladder material Sr\(_{0.4}\)Ca\(_{13.6}\)Cu\(_{24}\)O\(_{41.84}\). J. Phys. Soc. Jpn. 65, 2764 (1996). https://doi.org/10.1143/JPSJ.65.2764

  51. Schon, J.H., Dorget, M., Beuran, F.C., Xu, X.Z., Arushanov, E., Lagues, M., Cavellin, C.D.: Field-induced superconductivity in a spin-ladder cuprate. Science 293, 2430 (2001). https://doi.org/10.1126/science.1064204

    Article  ADS  Google Scholar 

  52. Piskunov, Y., Jerome, D., Auban-Senzier, P., Wzietek, P., Yakubovsky, A.: Hole redistribution in Sr\(_{14-x}\)Ca\(_x\)Cu\(_{24}\)O\(_{41}\) (\(x\)=0,12) spin ladder compounds: \(^{63}\)Cu and \(^{17}\)O NMR studies under pressure. Phys. Rev. B 72, 064512 (2005). https://doi.org/10.1103/PhysRevB.72.064512

  53. Maier, A., Dagotto, E.: Coupled Hubbard ladders at weak coupling: pairing and spin excitations. Phys. Rev. B 105, 054512 (2022). https://doi.org/10.1103/PhysRevB.105.054512

  54. Blankenbecler, R., Scalapino, D.J., Sugar, R.L.: Monte Carlo calculations of coupled boson-fermion systems. I. Phys. Rev. D 24, 2278 (1981). https://doi.org/10.1103/PhysRevD.24.2278

    Article  ADS  Google Scholar 

  55. Hirsch, J.E.: Two-dimensional Hubbard model: numerical simulation study. Phys. Rev. B 31, 4403 (1985). https://doi.org/10.1103/PhysRevB.31.4403

    Article  ADS  Google Scholar 

  56. White, S.R., Scalapino, D.J., Sugar, R.L., Bickers, N.E., Scalettar, R.T.: Attractive and repulsive pairing interaction vertices for the two-dimensional Hubbard model. Phys. Rev. B 39, 839 (1989). https://doi.org/10.1103/PhysRevB.39.839

    Article  ADS  Google Scholar 

  57. Loh, E., Gubernatis, J., Scalettar, R., White, S., Scalapino, D., Sugar, R.: Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B 41, 9301 (1990). https://doi.org/10.1103/PhysRevB.41.9301

    Article  ADS  Google Scholar 

  58. Iglovikov, V.I., Khatami, E., Scalettar, R.T.: Geometry dependence of the sign problem in quantum Monte Carlo simulations. Phys. Rev. B 92, 045110 (2015). https://doi.org/10.1103/PhysRevB.92.045110

    Article  ADS  Google Scholar 

  59. Ying, T.: The sign problem in quantum Monte Carlo simulations of the Hubbard model in a weak interaction region. EPL 125, 27001 (2019). https://doi.org/10.1209/0295-5075/125/27001

    Article  ADS  Google Scholar 

Download references

Funding

This work is sponsored by the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX1009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ying.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, S. & Ying, T. The Superconducting d-wave Pairing and Antiferromagnetic Order on the Coupled Hubbard Ladders: A Quantum Monte Carlo Study. J Supercond Nov Magn 36, 83–90 (2023). https://doi.org/10.1007/s10948-022-06446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06446-8

Keywords

Navigation