Skip to main content
Log in

Electronic and Optical Properties of \(V-Doped\)  AlN Rock-salt Structure: A First-principles Study Within GGA and \(GGA+U\) Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, the electronic and optical properties of the \(Al_{0.75}V_{0.25}N\) compound in the rock-salt structure are investigated using the first-principles calculations based on spin density functional theory within the ultrasoft pseudopotential method. The exchange-correlation potential was treated with the \(GGA-PBE\) and \(GGA+U\) PBESol approaches where the Hubbard-U term has been employed to better describe the electronic and optical properties of the strongly correlated system \(Al_{0.75}V_{0.25}N\). The negative formation energy found and phonon dispersion calculations show that the \(Al_{0.75}V_{0.25}N\) compound is both dynamically and thermodynamically stable in the ground state. This ternary alloy is predicted with GGA to be ferromagnetic metal in nature with a magnetic moment of \(1.62~\mu _B\) and ferromagnetic semiconductor when including Hubbard-U corrections (\(GGA+U\)) with a magnetic moment of \(2~\mu _B\), so it is a diluted magnetic semiconductor. In addition, several optical properties such as dielectric function, absorption, and reflectivity have been analyzed. Obtained results suggest that \(Al_{0.75}V_{0.25}N\) is a potential candidate for the spintronic and applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu, Q., Huang, Z., Wu, R., Chen, L.: Cu-doped aln: a dilute magnetic semiconductor free of magnetic cations from first-principles study. J. Phys. Condens. Matter 19(5), 056209 (2007)

  2. Yang, Y., Zhao, Q., Zhang, X., Liu, Z., Zou, C., Shen, B., Yu, D.: Mn-doped aln nanowires with room temperature ferromagnetic ordering. Appl. Phys. Lett. 90(9), 092118 (2007)

  3. Dridi, Z., Lazreg, A., Bouhafs, B.: First-principles study of electronic structure and magnetism of cubic al1- xerxn using the lsda+ u approach. J. Magn. Magn. Mater. 323(9), 1174–1178 (2011)

  4. Lei, W., Liu, D., Zhu, P., Chen, X., Zhao, Q., Wen, G., Cui, Q., Zou, G.: Ferromagnetic sc-doped aln sixfold-symmetrical hierarchical nanostructures. Appl. Phys. Lett. 95(16), 162501 (2009)

  5. Sandratskii, L., Bruno, P.: Density functional theory of high-tc ferromagnetism of (zncr) te. J. Phys. Condens. Matter 15(37), L585 (2003)

  6. Zhang, Y., Liu, W., Liang, P., Niu, H.: Half-metallic ferromagnetism in ca-doped aln from first-principles study. Solid State Commun. 147(7–8), 254–257 (2008)

  7. Cheng, Z., Koh, Y.R., Mamun, A., Shi, J., Bai, T., Huynh, K., Yates, L., Liu, Z., Li, R., Lee, E., et al.: Experimental observation of high intrinsic thermal conductivity of aln. Phys. Rev. Mater. 4(4), 044602 (2020)

  8. Wang, K., Xiao, Q., Xie, Q., Wang, L., He, T., Chen, H., Shi, J.: First-principles study of electronic structure and optical properties of la-doped aln. J. Electron. Mater. 48(8), 5135–5142 (2019)

  9. Wang, Z., Zhao, J., Gao, Y., Zhang, Y.: First-principle studies on the influence of anisotropic pressure on the physical properties of aluminum nitride. Mater. Res. Express 4(1), 016303 (2017)

  10. Xu, R.L., Muñoz Rojo, M., Islam, S., Sood, A., Vareskic, B., Katre, A., Mingo, N., Goodson, K.E., Xing, H.G., Jena, D., et al.: Thermal conductivity of crystalline aln and the influence of atomic-scale defects. J. Appl. Phys. 126(18), 185105 (2019)

  11. Yin, L.J., Zhang, S.H., Wang, H., Jian, X., Wang, X., Xu, X., Liu, M.Z., Fang, C.M.: Direct observation of eu atoms in aln lattice and the first-principles simulations. J. Am. Ceram. Soc. 102(1), 310–319 (2019)

  12. Sun, S., Sun, S., Ren, Y., Tan, X., Xu, P.: First principle calculations study of aln surface terminal structure evolution under different conditions. Surf. Interface Anal. 52(4), 167–173 (2020)

  13. Kalemtas, A., Topates, G., Bahadir, O., Pinar, K., Mandal, H.: Thermal properties of pressureless melt infiltrated aln-si-al composites. Trans. Nonferrous Met. Soc. Chin. 23(5), 1304–1313 (2013)

  14. Guisbiers, G., Buchaillot, L.: Thermo-opto-mechanical properties of aln nanostructures: a promising material for nems applications. J. Phys. D. Appl. Phys. 41(17), 172001 (2008)

  15. Chintalapati, S., Yang, M., Lau, S.P., Feng, Y.P.: Surface magnetism of mg doped AlN: a first principle study. J. Phys. Condens. Matter 26(43),(2014)

  16. Pandey, R., Sutjianto, A., Seel, M., Jaffe, J.E.: Electronic structure of high pressure phase of aln. J. Mater. Res. 8(8), 1922–1927 (1993)

  17. Dai, Y., Wang, W., Gui, C., Wen, X., Peng, Q., Liu, S.: A first-principles study of the mechanical properties of aln with raman verification. Comput. Mater. Sci. 112, 342–346 (2016)

  18. Rao, C., Deepak, F.L., Gundiah, G., Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31(1–2), 5–147 (2003)

    Article  Google Scholar 

  19. Gerl, M., Issi, J.P.: Physique des matériaux, vol. 8. PPUR presses polytechniques (1997)

  20. de Aguirre, I., Van de Wiel, M.A.: Introduction à la chimie générale: Vol. 2-Chimie minérale, vol. 2. De Boeck Supérieur (1987)

  21. Kara, F., Kurban, M., Coşkun, B.: Evaluation of electronic transport and optical response of two-dimensional fe-doped tio2 thin films for photodetector applications. Optik 210, 164605 (2020)

  22. Kurban, H., Alaei, S., Kurban, M.: Effect of mg content on electronic structure, optical and structural properties of amorphous zno nanoparticles: A dftb study. J. Non-Cryst. Solids 560, 120726 (2021)

  23. Kurban, M.: Electronic structure, optical and structural properties of si, ni, b and n-doped a carbon nanotube: Dft study. Optik 172, 295–301 (2018)

  24. Muz, İ., Kurban, M.: Enhancement of electronic, photophysical and optical properties of 5,5’-dibromo-2,2’-bithiophene molecule: new aspect to molecular design. Opto-Electron. Rev. 27(2), 113–118 (2019)

  25. Muz, İ., Kurban, M.: A first-principles evaluation on the interaction of 1, 3, 4-oxadiazole with pristine and b-, al-, ga-doped c60 fullerenes. J. Mol. Liq. 335, 116181 (2021)

  26. Miguel, J.E., John, H.D., Csar, O.L.: Ab-initio calculations of magnetic behavior in wurtzite AlxV1-xN compound. Int. J. Phys. Sci. 10(17), 520–527 (2015)

  27. Thapa, R., Saha, B., Chattopadhyay, K.: First principles analysis on v3+ doped aluminum nitride. Comput. Mater. Sci. 49(2), 363–367 (2010)

  28. Yao, G., Fan, G., Xing, H., Zheng, S., Ma, J., Zhang, Y., He, L.: Electronic structure and magnetism of v-doped aln. J. Magn. Magn. Mater. 331, 117–121 (2013)

  29. German, E., Faccio, R., Mombrú, A.W.: A dft+ u study on structural, electronic, vibrational and thermodynamic properties of tio2 polymorphs and hydrogen titanate: tuning the hubbard ‘U-term’. J. Phys. Commun. 1(5), 055006 (2017)

  30. Hsu, H., Umemoto, K., Cococcioni, M., Wentzcovitch, R.M.: The hubbard u correction for iron-bearing minerals: A discussion based on (mg, fe) sio3 perovskite. Phys. Earth Planet. Inter. 185(1–2), 13–19 (2011)

  31. Mosey, N.J., Carter, E.A.: Ab initio evaluation of coulomb and exchange parameters for dft+ u calculations. Phys. Rev. B 76(15), 155123 (2007)

  32. Sánchez, K., Palacios, P., Wahnón, P.: Electronic structure of bulk-and na-intercalated tis 2 determined from a gga+ u study with the hubbard terms obtained ab initio. Phys. Rev. B 78(23), 235121 (2008)

  33. Martin, R.M.: Electronic structure: basic theory and practical methods. Cambridge University Press (2020)

  34. Floris, A., Timrov, I., Himmetoglu, B., Marzari, N., de Gironcoli, S., Cococcioni, M.: Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials. Phys. Rev. B 101(6), 064305 (2020)

    Article  ADS  Google Scholar 

  35. Khan, M., Xu, J., Chen, N., Cao, W.: Electronic and optical properties of pure and mo doped anatase tio2 using gga and gga+ u calculations. Phys. B Condens. Matter 407(17), 3610–3616 (2012)

  36. Li, J., Meng, S., Li, L., Lu, H., Tohyama, T.: First-principles generalized gradient approximation (gga)+ ud+ up studies of electronic structures and optical properties in cubic hfo2. Comput. Mater. Sci. 81, 397–401 (2014)

  37. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the lda+ u method. J. Phys. Condens. Matter 9(4), 767 (1997)

    Article  ADS  Google Scholar 

  38. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K., Payne, M.C.: First principles methods using castep. Zeitschrift für Kristallographie-Crystalline Materials 220(5-6), 567–570 (2005)

  39. Tsuneda, T.: Density Functional Theory in Quantum Chemistry. SpringerLink : Bücher. Springer Japan (2014)

    Book  MATH  Google Scholar 

  40. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96(24), 9768–9774 (1992)

    Article  Google Scholar 

  41. Rahaman, M.M., Rubel, M.H., Rashid, M.A., Alam, M.A., Hossain, K.M., Hossain, M.I., Khatun, A.A., Hossain, M.M., Islam, A.A., Kojima, S., et al.: Mechanical, electronic, optical, and thermodynamic properties of orthorhonmbic licubio4 crystal: a first-priciples study. J. Mater. Res. Technol. 8(5), 3783–3794 (2019)

  42. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

  43. Haas, P., Tran, F., Blaha, P.: Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79(8), 085104 (2009)

  44. Yadav, S.K., Wang, J., Liu, X.Y.: First-principles modeling of zincblende AlN layer in Al-AlN-TiN multilayers. arXiv preprint arXiv:1604.02590 (2016)

  45. Holec, D., Mayrhofer, P.H.: Surface energies of aln allotropes from first principles. Scr. Mater. 67(9), 760–762 (2012)

  46. Vollstädt, H., Ito, E., Akaishi, M., Akimoto, S. I., Fukunaga, O.: High pressure synthesis of rocksalt type of AlN. Proc. Jpn. Acad. Ser. B 66(1), 7–9 (1990)

  47. Böer, K.W., Pohl, U.W.: Phonon-induced thermal properties. Journal: Semiconductor Physics pp. 151–179 (2018)

  48. Naher, M., Naqib, S.: First-principles insights into the mechanical, optoelectronic, thermophysical, and lattice dynamical properties of binary topological semimetal baga2. Results Phys. 37, 105507 (2022)

  49. Naher, M., Mahamudujjaman, M., Tasnim, A., Islam, R., Naqib, S.: Ab-initio insights into the elastic, bonding, phonon, optoelectronic and thermophysical properties of SnTaS2. arXiv preprint arXiv:2108.07411 (2021)

  50. Naher, M., Naqib, S.: An ab-initio study on structural, elastic, electronic, bonding, thermal, and optical properties of topological weyl semimetal ta x (x= p, as). Sci. Rep. 11(1), 1–21 (2021)

  51. Usman, T., Murtaza, G., Luo, H., Mahmood, A.: Gga and gga+ u study of rare earth-based perovskites in cubic phase. J. Supercond. Nov. Magn. 30(6), 1389–1396 (2017)

  52. Adachi, S.: Physical properties of III-V semiconductor compounds. John Wiley & Sons (1992)

    Book  Google Scholar 

  53. Hoat, D.: Electronic structure, chemical bonding, optical, elastic and dynamical properties of meb2 compounds: Effect of transition metal me= sc, ti and zr. Comput. Condens. Matter 21, e00406 (2019)

  54. Fox, M.: Optical Properties of Solids. Oxford Master Series in Physics. OUP Oxford (2010)

    Google Scholar 

  55. Lalic, M., Souza, S.: The first-principles study of electronic and optical properties of bgo and bso scintillators. Opt. Mater. 30(7), 1189–1192 (2008)

  56. Sun, J., Wang, H.T., Ming, N.B., He, J., Tian, Y.: Optical properties of heterodiamond b 2 cn using first-principles calculations. Appl. Phys. Lett. 84(22), 4544–4546 (2004)

  57. Touam, S., Belghit, R., Mahdjoubi, R., Megdoud, Y., Meradji, H., Khan, M.S., Ahmed, R., Khenata, R., Ghemid, S., Rai, D.P., et al.: First-principles computations of \(y_xga_{1-x}as\)-ternary alloys: a study on structural, electronic, optical and elastic properties. Bull. Mater. Sci. 43(1), 1–11 (2020)

  58. Zhang, X., Chen, Z., Zhang, S., Liu, R., Zong, H., Jing, Q., Li, G., Ma, M., Wang, W.: Electronic and optical properties of rock-salt aluminum nitride obtained from first principles. J. Phys. Condens. Matter 19(42), 425231 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Rougab.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rougab, M., Gueddouh, A. Electronic and Optical Properties of \(V-Doped\)  AlN Rock-salt Structure: A First-principles Study Within GGA and \(GGA+U\) Method. J Supercond Nov Magn 35, 3661–3669 (2022). https://doi.org/10.1007/s10948-022-06423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06423-1

Keywords

Navigation