Skip to main content
Log in

Microstructure, Thermal, and Magnetic Properties of the AlCoFeMnNi and AlCoFeMnNiX10 (X = Ti, Cr, Sn, V, Hf, Ga) High-Entropy Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The first generation of high-entropy alloys (HEAs) has five or more equiatomic components fabricated together in the concentration of 5–35 at.%. Recently, the second generation of HEAs was identified as having non-equimolar compositions. HEAs have excellent mechanical properties and magnetic behavior that may vary with the doping of other alloying elements. In the current study, various components (Ti, Cr, Sn, V, Hf, Ga) were added to an equiatomic AlCoFeMnNi alloy, and then the microstructure, thermal and magnetic properties of the alloys were investigated. As a result, all samples showed ferromagnetic behavior, and the highest value of magnetization was found in the AlCoFeMnNi alloy (141.1 emu/g). In comparison, the lowest value (51.2 emu/g) was detected through Hf addition to the AlCoFeMnNi alloy. Therefore, the change in magnetic characteristics is due to the phase change related to different element additions. In addition, the calculated coercivity for the tested alloys was in the range of 78–325 Oe, which means that the produced alloys have semi-hard magnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, P., Wang, A., Liu, C.T.: Composition dependence of structure, physical and mechanical properties of FeCoNi (MnAl) x high entropy alloys. Intermetallics 87, 21–26 (2017). https://doi.org/10.1016/j.intermet.2017.04.007

    Article  Google Scholar 

  2. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., et al.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  3. Tsai, M.-H., Yeh, J.-W.: High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  Google Scholar 

  4. Tung, C.-C., Yeh, J.-W., Shun, T.-T., Chen, S.-K., Huang, Y.-S., Chen, H.-C.: On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett, 61(1):1–5 (2007). https://doi.org/10.1016/j.matlet.2006.03.140

  5. Osintsev, K.A., et al.: Research on the structure of Al2. 1Co0. 3Cr0. 5FeNi2. 1 high-entropy alloy at submicro-and nano-scale levels. Mater. Lett. 294, 1–4 (2021). https://doi.org/10.1016/j.matlet.2021.129717

  6. Zhang, W., et al.: Additive manufactured high entropy alloys: a review on the microstructure and properties. Mater. Des. 220, 1–40 (2022). https://doi.org/10.1016/j.matdes.2022.110875

    Article  Google Scholar 

  7. Mishra, R.K., Sahay, P.P., Shahi, R.R.: Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. J. Mater. Sci. 54(5), 4433–4443 (2019). https://doi.org/10.1007/s10853-018-3153-z

    Article  ADS  Google Scholar 

  8. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., et al.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  9. Cantor, B., Chang, I., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  10. Jin, X., Bi, J., Zhang, L., Zhou, Y., Du, X., Liang, Y., et al.: A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd. 770, 655–661 (2019). https://doi.org/10.1016/j.jallcom.2018.08.176

    Article  Google Scholar 

  11. Pickering, E., Jones, N.: High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016). https://doi.org/10.1080/09506608.2016.1180020

    Article  Google Scholar 

  12. Yeh, J.-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65(12), 1759–1771 (2013). https://doi.org/10.1007/s11837-013-0761-6

    Article  Google Scholar 

  13. Ibrahim, P.A., Özkul, İ, Canbay, C.A.: Methodological research of high entropy alloys by using bibliometrics analysis. J. Mater. Electron. Dev. 5(1), 7–13 (2021)

    Google Scholar 

  14. Yeh, J.W., Chen, Y.L., Lin, S.J., Chen, S.K., editors.: High-entropy alloys–a new era of exploitation. Mater. Sci. Forum. 560:1–9 (2007).  https://doi.org/10.4028/www.scientific.net/MSF.560.1

  15. He, Q., Ding, Z., Ye, Y., Yang, Y.: Design of high-entropy alloy: a perspective from nonideal mixing. JOM 69(11), 2092–2098 (2017). https://doi.org/10.1007/s11837-017-2452-1

    Article  Google Scholar 

  16. Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., Birbilis, N.: Corrosion of high entropy alloys. npj Mater. Degrad. 1(15):1–18 (2017). https://doi.org/10.1038/s41529-017-0009-y

  17. Karati, A., Nagini, M., Ghosh, S., Shabadi, R., Pradeep, K.G., Mallik, R.C., et al.: Ti 2 NiCoSnSb-a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Sci. Rep. 9(5331), 1–12 (2019). https://doi.org/10.1038/s41598-019-41818-6

    Article  Google Scholar 

  18. Huang, S., Li, W., Li, X., Schönecker, S., Bergqvist, L., Holmström, E., et al.: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater. des. 103, 71–84 (2016). https://doi.org/10.1016/j.matdes.2016.04.053

    Article  Google Scholar 

  19. Yana, X., Zhang, Y.: Functional properties and promising applications of high entropy alloys. Scr. Mater. 187, 188–193 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.017

    Article  Google Scholar 

  20. Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., et al.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113(10), 1–5 (2014). https://doi.org/10.1103/PhysRevLett.113.107001

    Article  Google Scholar 

  21. Xia, S., Yang, X., Yang, T., Liu, S., Zhang, Y.: Irradiation resistance in Al x CoCrFeNi high entropy alloys. JOM 67(10), 2340–2344 (2015). https://doi.org/10.1007/s11837-015-1568-4

    Article  Google Scholar 

  22. Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., et al.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116(13), 1–8 (2016). https://doi.org/10.1103/PhysRevLett.116.135504

    Article  Google Scholar 

  23. Li, P., Wang, A., Liu, C.T.: A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 694, 55–60 (2017). https://doi.org/10.1016/j.jallcom.2016.09.186

    Article  Google Scholar 

  24. Zhang, Y., Zuo, T., Cheng, Y., Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3(1), 1–7 (2013). https://doi.org/10.1038/srep01455

    Article  Google Scholar 

  25. Park, J.H., Hong, Y.K., Bae, S., Lee, J.J., Jalli, J., Abo, G.S., et al.: Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J. Appl. Phy. 107(9), 1–3 (2010). https://doi.org/10.1063/1.3337640

    Article  Google Scholar 

  26. Liu, Z.W., Chen, C., Zheng, Z.G., Tan, B.H., Ramanujan, R.V.: Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements. J. Mater. Sci. 47(5), 2333–2338 (2012). https://doi.org/10.1007/s10853-011-6049-8

    Article  ADS  Google Scholar 

  27. Mishra, R.K., Shahi, R.R.: Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M= Mn, Co) high entropy alloys. J. Magn. Magn. Mater. 442, 218–223 (2017). https://doi.org/10.1016/j.jmmm.2017.06.124

    Article  ADS  Google Scholar 

  28. Zuo, T., Gao, M.C., Ouyang, L., Yang, X., Cheng, Y., Feng, R., et al.: Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10–18 (2017). https://doi.org/10.1016/j.actamat.2017.03.013

    Article  ADS  Google Scholar 

  29. Hariharan, V.S., Karati, A., Parida, T., John, R., Babu, D.A., Murty, B.S.: Effect of Al addition and homogenization treatment on the magnetic properties of CoFeMnNi high-entropy alloy. J. Mater. Sci. 55(36), 17204–17217 (2020). https://doi.org/10.1007/s10853-020-05171-8

    Article  ADS  Google Scholar 

  30. Gao, M.C., Miracle, D.B., Maurice, D., Yan, X., Zhang, Y., Hawk, J.A.: High-entropy functional materials. J. Mater. Res. 33(19), 3138–3155 (2018). https://doi.org/10.1557/jmr.2018.323

    Article  ADS  Google Scholar 

  31. Han, T., et al.: Effect of annealing on microstructure and mechanical properties of AlCrFe2Ni2 medium entropy alloy fabricated by laser powder bed fusion additive manufacturing. Mater. Sci. and Eng. A 839, 1–14 (2022). https://doi.org/10.1016/j.msea.2022.142868

    Article  Google Scholar 

  32. Zhang, J.J., Yin, X.L., Dong, Y., Lu, Y.P., Jiang, L., Wang, T.M., et al.: Corrosion properties of AlxCoCrFeNiTi0· 5 high entropy alloys in 0· 5M H2SO4 aqueous solution. Mater. Res. Innovations 18(sup4), 756–760 (2014). https://doi.org/10.1179/1432891714Z.000000000778

    Article  Google Scholar 

  33. Qiu, Y., Gibson, M.A., Fraser, H.L., Birbilis, N.: Corrosion characteristics of high entropy alloys. Mater. Sci. Technol. 31, (10):1235–1243 (2015). https://doi.org/10.1179/1743284715Y.0000000026

  34. Senkov, O.N., Miracle, D.B.: Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36(12), 2183–2198 (2001). https://doi.org/10.1016/S0025-5408(01)00715-2

    Article  Google Scholar 

  35. Sheng, G., Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21(6):433–446 (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

  36. Guo, S., Ng, C., Lu, J., Liu, C.: Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J. appl. phys. 109(10), 1–5 (2011). https://doi.org/10.1063/1.3587228

    Article  Google Scholar 

  37. Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534–538 (2008). https://doi.org/10.1002/adem.200700240

    Article  Google Scholar 

  38. Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817

    Article  Google Scholar 

  39. Ye, Y., Wang, Q., Lu, J., Liu, C., Yang, Y.: High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026

    Article  Google Scholar 

  40. Mizutani, U.: The Hume-Rothery rules for structurally complex alloy phases. Surface Properties And Engineering Of Complex Intermetallics. World Scientific. 323–399 (2010).

  41. Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., et al.: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144, 129–137 (2018). https://doi.org/10.1016/j.actamat.2017.10.058

    Article  ADS  Google Scholar 

  42. Zhang, A., Han, J., Meng, J., Su, B., Li, P.: Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82–85 (2016). https://doi.org/10.1016/j.matlet.2016.06.014

    Article  Google Scholar 

  43. Dong, Y., Lu, Y.: Microstructure and Mechanical Properties of CoCrFeNi2Al1-xWx High Entropy Alloys. Arabian J. Sci. Eng. 44(2), 803–808 (2019). https://doi.org/10.1007/s13369-018-3297-9

    Article  Google Scholar 

  44. Yang, X., Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132(2–3), 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  45. Wu, C.-S., Tsai, P.-H., Kuo, C.-M., Tsai, C.-W.: Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys. Entropy 20(12), 1–10 (2018). https://doi.org/10.3390/e20120967

    Article  Google Scholar 

  46. Erdal, Z.A.: Structural and mechanical characterization of scale-up FeCoCrNi, FeCoCrNiCux, AND FeCoCrNiAlx high entropy alloys (HEAs) [Master ]: Middle East Technical University. (2020)

  47. Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., et al.: Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans A 36A(4), 881–893 (2005). https://doi.org/10.1007/s11661-005-0283-0

    Article  ADS  Google Scholar 

  48. Marattukalam, J.J., Balla, V.K., Das, M., Bontha, S., Kalpathy, S.K.: Effect of heat treatment on microstructure, corrosion, and shape memory characteristics of laser deposited NiTi alloy. J. Alloys Compd. 744, 337–346 (2018). https://doi.org/10.1016/j.jallcom.2018.01.174

    Article  Google Scholar 

  49. Quéré, D.: Non-sticking drops. Rep. Prog. Phys. 68(11), 2495–2532 (2005). https://doi.org/10.1088/0034-4885/68/11/R01

    Article  ADS  Google Scholar 

  50. Zhang, K., Fu, Z.: Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 22, 24–32 (2012). https://doi.org/10.1016/j.intermet.2011.10.010

    Article  Google Scholar 

  51. Kao, Y.-F., Chen, T.-J., Chen, S.-K., Yeh, J.-W.: Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. J. Alloys Compd. 488(1), 57–64 (2009). https://doi.org/10.1016/j.jallcom.2009.08.090

    Article  Google Scholar 

  52. Karati, A., Guruvidyathri, K., Hariharan, V.S., Murty, B.S.: Thermal stability of AlCoFeMnNi high-entropy alloy. Scr. Mater. 162, 465–467 (2019). https://doi.org/10.1016/j.scriptamat.2018.12.017

    Article  Google Scholar 

  53. Cui, P., Ma, Y., Zhang, L., Zhang, M., Fan, J., Dong, W. et al.: Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system. Mater. Sci. Eng. A. 737, 198–204 (2018). https://doi.org/10.1016/j.msea.2018.09.050

  54. Zuo, T.T., Li, R.B., Ren, X.J., Zhang, Y.: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371, 60–68 (2014). https://doi.org/10.1016/j.jmmm.2014.07.023

    Article  ADS  Google Scholar 

  55. Mishra, R.K., Shahi, R.R.: Magnetic characteristics of high entropy alloys. Magnetism And Magnetic Materials. Intech Open.  67–80 (2018)

  56. Li, Z., Gu, Y., Wang, C., Pan, M., Zhang, H., Wu, Z. et al.: Microstructure and magnetic properties of the FeCoNi (CuAl) 0.8 Ga0. 06 high-entropy alloy during the phase transition. J. Alloys Compd. 779, 293–300 (2019). https://doi.org/10.1016/j.jallcom.2018.11.235

  57. Feng, W., Qi, Y., Wang, S.: Effects of Mn and Al addition on structural and magnetic properties of FeCoNi-based high entropy alloys. Mater. Res. Express 5(10), 1–13 (2018). https://doi.org/10.1088/2053-1591/aadaa7

    Article  Google Scholar 

  58. Zuo, T., Zhang, M., Liaw, P.K., Zhang, Y.: Novel high entropy alloys of FexCo1-xNiMnGa with excellent soft magnetic properties. Intermetallics 100, 1–8 (2018). https://doi.org/10.1016/j.intermet.2018.05.014

    Article  Google Scholar 

  59. Zhang, Y., Zuo, T., Cheng, Y., Liaw, P.K.: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01455

    Article  Google Scholar 

  60. Ghasemi, A., Zamani, K., Tavoosi, M., Gordani, G.R.: Enhanced soft magnetic properties of CoNi-based high entropy Alloys. J. Supercond. Novel Magn. 33(10), 3189–3196 (2020). https://doi.org/10.1007/s10948-020-05579-y

    Article  Google Scholar 

  61. Chaudhary, V., Gwalani, B., Soni, V., Ramanujan, R.V., Banerjee, R.: Influence of Cr substitution and temperature on hierarchical phase decomposition in the AlCoFeNi high entropy alloy. Sci. Rep. 8(15578), 1–12 (2018). https://doi.org/10.1038/s41598-018-33922-w

    Article  Google Scholar 

  62. Ma, S.G., Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A. 532, 480–486 (2012). https://doi.org/10.1016/j.msea.2011.10.110

  63. Li, Z., Wang, C., Yu, L., Gu, Y., Pan, M., Tan, X. et al.: Magnetic properties and microstructure of FeCoNi (CuAl) 0.8 Snx (0≤ x≤ 0.10) high-entropy alloys. Entropy. 20, (872):1–11 (2018). https://doi.org/10.3390/e20110872

  64. Alijani, F., Reihanian, M., Gheisari, K.: Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J. Alloys Compd. 773, 623–630 (2019). https://doi.org/10.1016/j.jallcom.2018.09.204

    Article  Google Scholar 

  65. Zuo, T.-T., Ren, S.-B., Liaw, P.K., Zhang, Y.: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2 Si0.2 high entropy alloy. JOM. 20,(6):549–555 (2013). https://doi.org/10.1007/s12613-013-0764-x

  66. Li, Z., Xu, H., Gu, Y., Pan, M., Yu, L., Tan, X. et al.: Correlation between the magnetic properties and phase constitution of FeCoNi (CuAl) 0.8 Gax (0≤ x≤ 0.08) high-entropy alloys. J. Alloys Compd. 746, 285–291 (2018). https://doi.org/10.1016/j.jallcom.2018.02.189

Download references

Funding

This work is supported by Firat University Scientific Research Projects Coordination Unit (FÜBAP) with a project number FF.21.11. This article is a part of P.A. Ibrahim’s master study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Aksu Canbay.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, P.A., Canbay, C.A. & Özkul, İ. Microstructure, Thermal, and Magnetic Properties of the AlCoFeMnNi and AlCoFeMnNiX10 (X = Ti, Cr, Sn, V, Hf, Ga) High-Entropy Alloys. J Supercond Nov Magn 35, 3713–3726 (2022). https://doi.org/10.1007/s10948-022-06420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06420-4

Keywords

Navigation