Skip to main content
Log in

Granular Superconductivity in Hydrides Under Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

It has been suggested that the measured magnetic properties of hydrides under pressure claimed to be high-temperature superconductors indicate that the materials are granular superconductors. Such materials will show reduced or no magnetic field expulsion under field cooling, and will trap magnetic fields when the external magnetic field is removed. They will also exhibit hysteretic behavior in magnetoresistance and other transport properties. Here, we point out that hysteresis in transport properties has never been reported for hydrides under pressure. Its presence, with the expected features, would indicate that the materials trap magnetic flux, hence that they can sustain persistent currents without dissipation, something that all superconductors can do. Conversely, its absence would indicate that these materials are not superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015)

    Article  ADS  Google Scholar 

  2. Nakao, H., et al.: Superconductivity of Pure \(H_3S\) Synthesized from Elemental Sulfur and Hydrogen. J. Phys. Soc. Jpn. 88, 123701 (2019)

  3. Grockowiak, A.D., et al.: Hot Hydride Superconductivity Above 550K. Front. Electron. Mater. March 2022, Article 837651

  4. Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., Cui, T.: Pressure-induced metallization of dense \((H_2S)_2H_2\) with high-\(T_c\) superconductivity. Sci. Rep. 4, 6968 (2014)

  5. Wang, D., Ding, Y., Mao, H.K.: Future study of dense superconducting hydrides at high pressure. Materials 14, 7563 (2021). and references therein

  6. Jingkai, B., et al.: Efficient route to achieve superconductivity improvement via substitutional La-Ce alloy superhydride at high pressure. arXiv:2204.04623 (2022)

  7. Semenok, D.V., et al.: Effect of paramagnetic impurities on superconductivity in polyhydrides: s-wave order parameter in Nd-doped \(LaH_{10}\). arXiv:2203.06500 (2022)

  8. Ma, L., et al.: High-temperature superconducting phase in clathrate calcium hydride \(CaH_6\) up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022)

  9. Zhang, C.L., et al.: Superconductivity in Zirconium Polyhydrides with Tc above 70K. arXiv:2112.14439 (2022)

  10. Huang, X., et al.: High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Nat. Sci. Rev. 6, 713 (2019)

    Article  Google Scholar 

  11. Struzhkin, V., et al.: Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter and Radiation at Extremes 5, 028201 (2020)

    Article  Google Scholar 

  12. Snider, E., et al.: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373 (2020)

    Article  ADS  Google Scholar 

  13. Hirsch, J.E.: Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure. National Science Review 9, nwac086 (2022) and arXiv:2109.08517 (2021)

  14. Hirsch, J.E., Marsiglio, F.: Absence of magnetic evidence for superconductivity in hydrides under high pressure. Physica C 584, 1353866 (2021)

    Article  ADS  Google Scholar 

  15. Hirsch, J.E.:Comment on Room-temperature superconductivity in a carbonaceous sulfur hydrid by Elliot Snider, et al.: EPL 137, 36001 (2022)

  16. van der Marel, D., Hirsch, J.E.: Extended Comment on Nature 586, 373 (2020) by E. Snider et al. arXiv:2201.07686 (2022)

  17. Minkov, V., et al.: Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun. 13, 3194 (2022)

    Article  ADS  Google Scholar 

  18. Eremets, M.I., et al.: High-temperature superconductivity in hydrides: experimental evidence and details. J Supercond Nov Magn 35, 965 (2022)

    Article  Google Scholar 

  19. Hirsch, J.E., Marsiglio, F.: Clear evidence against superconductivity in hydrides under high pressure. arXiv:2110.07568 (2021)

  20. Troyan, I., et al.: Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science 351, 1303 (2016)

    Article  ADS  Google Scholar 

  21. Prozorov, R., Bud’ko, S.L.: On the analysis of the tin-inside-H3S Mössbauer experiment. arXiv:2204.07847 (2022)

  22. Hirsch, J.E., Marsiglio, F.: Meissner effect in nonstandard superconductors. Physica C 587, 1353896 (2021)

    Article  ADS  Google Scholar 

  23. Hirsch, J.E., Marsiglio, F.: Flux trapping in superconducting hydrides under high pressure. Physica C 589, 1353916 (2021)

    Article  ADS  Google Scholar 

  24. Deutscher, G.: New Superconductors: From Granular to High \(T_c\). World Scientific, Singapore (2014)

  25. Balaev, D.A., Semenov, S.V., Gokhfeld, D.M.: New Evidence of Interaction Between Grain and Boundaries Subsystems in Granular High-Temperature Superconductors. J. Sup. Nov. Mag. 34, 1067 (2021). and references therein

  26. Balaevet, D.A., et al.: Magnetoresistance Hysteresis in Granular HTSCs as a Manifestation of the Magnetic Flux Trapped by Superconducting Grains in YBCO + CuO Composites. J. Exp. Theor. Phys. 105, 1174–1183 (2007)

    Article  ADS  Google Scholar 

  27. Balaevet, D.A., et al.: Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop. J. Exp. Theor. Phys. 108, 241 (2009)

    Article  ADS  Google Scholar 

  28. Garca-Fornaris, I., Govea-Alcaide, E., Muné, P., Jardim, R.F.: Magnetoresistance, transport noise and granular structure in polycrystalline superconductors. Phys. Stat. Sol. (a) 204, 805 (2007)

  29. Semenov, S.V., Balaev, D.A.: Model of the Behavior of a Granular HTS in an External Magnetic Field: Temperature Evolution of the Magnetoresistance Hysteresis. Phys. Solid State 62, 1136 (2020)

    Article  ADS  Google Scholar 

  30. Shifang, S., et al.: The Behaviour of Negative Magnetoresistance and Hysteresis in \(YBa_2Cu_3O_{7-\delta }\). EPL 6, 359 (1988)

  31. Quian, Y.J., et al.: Transport hysteresis of the oxide superconductor \(Y_1Ba_2Cu_3O_{7-x}\) in applied fields. Phys. Rev. B. 39, 4701 (1989)

  32. Chen, K.Y., Qian, Y.J.: Critical current and magnetoresistance hysteresis in polycrystalline \(YBa_2Cu_3O_{7-x}\). Physica C 159, 131 (1989)

  33. Pradhan, A.K., et al.: \(H_{c1}\) measurements using hysteresis in magnetoresistance of sintered YBaCuO. Appl. Supercond. 3, 223 (1995)

  34. Felner, I., et al.: Magnetoresistance hysteresis and critical current density in granular \(RuSr_{2}Gd_{2x}Ce_{x}Cu_{2}O_{10-\delta }\). Phys. Rev. B 67, 134506 (2003).

  35. Sukhareva, T.V., Finkel, V.A.: Hysteresis of the Magnetoresistance of Granular HTSC \(YBa_{2} Cu_{3} O_{7-\delta }\) in Weak Fields. Phys. Solid State 50, 1001 (2008)

  36. Das, A., Banerjee, A., Srinivasan, R.: History effects in low-field magnetoresistance of BPSSCO polycrystals. Bull. Mater. Sci. 17, 607 (1994)

    Article  Google Scholar 

  37. Derevyanko, V.V., Sukhareva, T.V., Finkel, V.A.: Magnetoresistance hysteresis of granular \(YBa_2Cu_3O_{7-\delta }\) high-temperature superconductor in weak magnetic fields. Tech. Phys. 53, 321 (2008)

  38. Semenov, S.V., Balaev, A.D., Balaev, D.A.: Dissipation in granular high-temperature superconductors: New approach to describing the magnetoresistance hysteresis and the resistive transition in external magnetic fields. J. Appl. Phys. 125, 033903 (2019)

    Article  ADS  Google Scholar 

  39. Balaev, D.A., et al.: Specific features in the hysteretic behavior of the magnetoresistance of granular high temperature superconductors. Phys. Solid State 54, 2155 (2012)

    Article  ADS  Google Scholar 

  40. das Virgens, M.G., Garcia, S., Ghivelder, L.: Lower critical field and intragrain critical current density in the ruthenate-cuprate \(RuSr_2Gd_{1.5}Ce_{0.5}Cu_2O_{10}\). Eur. Phys. J. B 49, 135 (2006)

  41. Balaev, D.A., et al.: Nonmonotonic Behavior of Magnetoresistance, bR(H) Hysteresis, and Low Temperature Heat Capacity of the \(BaPb_{0.75}Bi_{0.25}O_3\) Superconductor in a Magnetic Field: Possible Manifestations of Phase Separation. J. Exp. Theor. Phys. 110, 584 (2010)

  42. Sugiura, S., et al.: Josephson vortex dynamics and Fulde-Ferrell-Larkin-Ovchinnikov superconductivity in the layered organic superconductor \(\beta -(BEDT-TTF)_2SF_5CH_2CF_2SO_3\). Phys. Rev. B 100, 014515 (2019)

  43. Olutas, M., et al.: Hysteresis Effects in Magnetovoltage Measurements in Superconducting \(MgB_2\). IEEE Transactions on Applied Superconductivity 19, 2744 (2009)

  44. Olutas, M., Kili, A., Kili, K., Altinkok, A.: Irreversibility Effects and Low Field Magnetovoltage Measurements in Superconducting \(MgB_2\) Near the Critical Temperature \(T_c\). J Supercond Nov Magn 26, 3369 (2013)

  45. Barzola-Quiquia, J., et al.: Andreev Reflection and Granular Superconductivity Features Observed in Mesoscopic Samples Using Amorphous Tungsten Carbide Superconductors. J Supercond Nov Magn 24, 463 (2011)

    Article  Google Scholar 

  46. Balaev, D.A., et al.: Magnetoresistance hysteresis of bulk textured \(Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x + Ag\) ceramics and its anisotropy. Physica C 470, 61 (2010)

  47. Altinkok, A., Kili, K., Olutas, M., Kili, A.: Magnetovoltage Measurements and Hysteresis Effects in Polycrystalline Superconducting \(Y_1Ba_2Cu_3O_{7-x}/Ag\) in Weak Magnetic Fields. J Supercond Nov Magn 26, 3085 (2013)

  48. Zhou, H., Jin, X.: Stray field and vortex controlled magnetoresistance in superconducting Bi/Ni bilayers. J. Magn. Magn. Mater. 458, 171 (2018)

    Article  ADS  Google Scholar 

  49. He, S.K., et al.: Hysteresis magnetoresistance and edge superconductivity in Nb film with diluted square array of holes. Supercond. Sci. Technol. 30, 115016 (2017)

    Article  ADS  Google Scholar 

  50. Evetts, J.E., Glowacki, B.A.: Relation of critical current irreversibility to trapped flux and microstructure in polycrystalline \(YBa_2Cu_3O_7\). Cryogenics 28, 641 (1988)

  51. Müller, K.A., Takashige, M., Bednorz, J.G.: Flux Trapping and Superconductive Glass State in \(La_2CuO_{4-y}:Ba\). Phys. Rev. Lett. 58, 1143 (1987)

  52. Zhang, G., et al.: Bosonic Anomalies in Boron-Doped Polycrystalline Diamond. Phys. Rev. Appl. 064011 (2016)

  53. Zhang, G., et al.: Metal-Bosonic Insulator-Superconductor Transition in Boron-Doped Granular Diamond. Phys. Rev. Lett. 077001 (2013)

  54. Drozdov, A.P., et al.: Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528 (2019)

    Article  ADS  Google Scholar 

  55. Hirsch, J.E.: Hole superconductivity xOr hot hydride superconductivity. J. Appl. Phys. 130, 181102 (2021)

    Article  ADS  Google Scholar 

  56. Semenov, S.V., Balaev, D.A.: Magnetoresistance Hysteresis Evolution in the Granular Y-Ba-Cu-O High-Temperature Superconductor in a Wide Temperature Range. J. Supercond. Nov. Magn. 32, 2409 (2019)

    Article  Google Scholar 

  57. Celasco, M., et al.: Evidence of current-noise hysteresis in superconducting \(YBa_2Cu_3O_{7?\delta }\) specimens in a magnetic field. Phys. Rev. B. 43, 11478 (1991)

  58. Ji, L., Rzchowski, M.S., Anand, N., Tinkham, M.: Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors. Phys. Rev. B 47, 470 (1993)

    Article  ADS  Google Scholar 

  59. Mishra, P.K., et al.: Transport Critical Current Density of Polycrystalline YBCO in Zero Field Cooled and Field Cooled States: A Comparison. Jpn. J. Appl. Phys. 29, L1612 (1990)

    Article  Google Scholar 

  60. Lopez, D., de la Cruz, F.: Anisotropic energy dissipation in high-\(T_c\) ceramic superconductors: Local-field effects. Phys. Rev. B 43, 11478(R) (1991)

  61. Lopez, D., Decca, R., de la Cruz, F.: Anisotropic energy dissipation, flux flow and topological pinning in ceramic superconductors. Supercond. Sci. Technol. 5, S276 (1992)

    Article  Google Scholar 

  62. Balaev, D.A., et al.: General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems. Phys. Solid State 53, 922 (2011)

    Article  ADS  Google Scholar 

  63. Hirsch, J.E., Marsiglio, F.: Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Phys. Rev. B 103, 134505 (2021)

    Article  ADS  Google Scholar 

  64. Dogan, M., Cohen, M.L.: Anomalous behavior in high-pressure carbonaceous sulfur hydride. Physica C 583, 1353851 (2021)

    Article  ADS  Google Scholar 

  65. Boeri, L., et al.: The 2021 Room-Temperature Superconductivity Roadmap. J. Phys. Cond. Matt. 34, 183002 (2022). and references therein

Download references

Acknowledgements

The author is grateful to Yang Ding and Frank Marsiglio for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Hirsch.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, J.E. Granular Superconductivity in Hydrides Under Pressure. J Supercond Nov Magn 35, 2731–2736 (2022). https://doi.org/10.1007/s10948-022-06340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06340-3

Keywords

Navigation