Skip to main content

Advertisement

Log in

First-Principles Investigation of the Structural, Elastic and Thermodynamic Properties of CaRu2X2 (X = P, As) under Pressure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, elastic and thermodynamic properties of CaRu2As2 and CaRu2P2 under pressure effect up to 18 GPa were determined through density functional theory calculations. The calculated equilibrium lattice parameters are in good agreement with the available experimental findings. The computed single-crystal elastic constants show that the title compounds are mechanically stable in all the considered pressure range (0–18 GPa). The title compounds exhibit a strong elastic anisotropy. Pressure-dependence of the single-crystal elastic constants and polycrystalline elastic moduli, namely bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio, was successfully determined. Debye temperature, average sound velocity, minimum thermal conductivity (Kmin), Vickers hardness (HV) and melting temperature (Tm) of the title compounds were calculated for a pressure range from 0 to 18 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., Franz, W., Schäfer, H.: Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43(25), 1892–1894 (1979). https://doi.org/10.1103/PhysRevLett.43.1892

    Article  ADS  Google Scholar 

  2. Jeitschko, W., Glaum, R., Boonk, L.: Superconducting LaRu2P2 and other alkaline earth and rare earth metal ruthenium and osmium phosphides and arsenides with ThCr2Si2 structure. J. Solid-State Chem. 69(1), 93–100 (1987). https://doi.org/10.1016/0022-4596(87)90014-4

    Article  ADS  Google Scholar 

  3. Ganesanpotti, S., Yajima, T., Nakano, K., Nozaki, Y., Yamamoto, T., Tassel, C., Kageyama, H.: Superconductivity in LaPd2As2 with a collapsed 122 structure. J. Alloy. Compd. 613, 370–374 (2014). https://doi.org/10.1016/j.jallcom.2014.06.054

    Article  Google Scholar 

  4. Buschow, K.H.J.: Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40(10), 1179 (1977)

    Article  ADS  Google Scholar 

  5. Zheng, C., Hoffmann, R.: Complementary local and extended views of bonding in the ThCr2Si2 and CaAl2Si2 structures. J. Solid-State Chem. 72(1), 58–71 (1988). https://doi.org/10.1016/0022-4596(88)90009-6

    Article  ADS  Google Scholar 

  6. Narasimhan, K.S.V.L., Rao, V.U.S., Bergner, R.L., Wallace, W.E.: Magnetic properties of RMn2Ge2 compounds (R= La, Ce, Pr, Nd, Cd, Tb, Dy, Ho, Er, and Th). J. Appl. Phys. 46(11), 4957–4960 (1975). https://doi.org/10.1063/1.321480

    Article  ADS  Google Scholar 

  7. Laski, M., Szytuia, A.J.: Less-common Metals. 87, L1 (1982)

  8. Felner, I., Nowik, I.: Itinerant and local magnetism, superconductivity and mixed valency phenomena in RM2Si2, (R= rare earth, M= Rh, Ru). J. Phys. Chem. Solid. 45(4), 419–426 (1984). https://doi.org/10.1016/0022-3697(84)90149-5.

  9. Oesterreicher, H.: Magnetic studies on compounds RCuSi, R6Cu8Si8, and RCu2Si2 (R= Pr, Gd, Tb). Physica Status Solidi (a). 34(2), 723–728 (1976). https://doi.org/10.1002/pssa.2210340237

    Article  ADS  Google Scholar 

  10. Mörsen, E., Mosel, B.D., Müller-Warmuth, W., Reehuis, M., Jeitschko, W.: Mössbauer and magnetic susceptibility investigations of strontium, lanthanum and europium transition metal phosphides with ThCr2Si2 type structure. J. Phys. Chem. Solids. 49(7), 785–795 (1988). https://doi.org/10.1016/0022-3697(88)90030-3

    Article  ADS  Google Scholar 

  11. Ronning, F., Kurita, N., Bauer, E.D., Scott, B.L., Park, T., Klimczuk, T., Thompson, J.D.: The first order phase transition and superconductivity in BaNi2As2 single crystals. J. Phys. Condens. Matter. 20(34), 342203 (2008)

  12. Zheng, C.: Bonding and dynamics of the ThCr2Si2 and CaBe2Ge2 type main group solids: a Monte Carlo simulation study. J. Am. Chem. Soc. 115(3), 1047–1051 (1993). https://doi.org/10.1021/ja00056a032.

  13. Bauer, E.D., Ronning, F., Scott, B.L., Thompson, J.D.: Superconductivity in SrNi2As2 single crystals. Phys. Rev. B. 78(17), 172504 (2008). https://doi.org/10.1103/PhysRevB.78.172504.

  14. Shein, I.R., Ivanovskii, A.L.: Electronic and structural properties of low-temperature superconductors and ternary pnictides ANi2Pn2 (A= Sr, Ba and Pn = P, As). Phys. Rev. B 79(5), 054510 (2009). https://doi.org/10.1103/PhysRevB.79.054510

    Article  ADS  Google Scholar 

  15. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I., Refson, K., Payne, M.C.: First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Mater. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075.

  16. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406.

  17. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892

    Article  ADS  Google Scholar 

  18. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  ADS  Google Scholar 

  19. Fischer, T.H., Almlof, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96(24), 9768–9774 (1992). https://doi.org/10.1021/j100203a036

    Article  Google Scholar 

  20. Kang, J., Lee, E.C., Chang, K.J.: First-principles study of the structural phase transformation of hafnia under pressure. Phys. Rev. B 68(5), 054106 (2003)

    Article  ADS  Google Scholar 

  21. Bouhemadou, A.: Calculated structural and elastic properties of M2InC (M = Sc, Ti, V, Zr, Nb, Hf, Ta)”. Mod. Phys. Lett. B. 22(22), 2063–2076 (2008). https://doi.org/10.1142/S0217984908016807

    Article  MATH  ADS  Google Scholar 

  22. Voigt, W.: Lehrbuch der Kristallphysik, Leipzig, Advances in Earth Science. Germany (1928). https://doi.org/10.1103/PhysRevB.68.054106

    Article  Google Scholar 

  23. Reuss, A., Angew, Z.: Math. Mech. (9) 5566 (1929)

  24. Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. Sect. A. 65(5), 349 (1952)

  25. Momma, K., Izumi, F.: VESTA: A Three-dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  26. Wenski, G., Mewis, A.: BaAl4-Strukturvarianten bei ARu2X2 (A= Ca, Sr, Ba, Eu; X= P, As) und APt2P2-x (A= Ca, Eu)/BaAl4-Denvative Structures of ARu2X2 (A= Ca, Sr, Ba. Eu; X= P, As) and of APt2P2-x (A= Ca, Eu). Zeitschrift fuer Naturforschung B. 41(1), 38–43 (1986). https://doi.org/10.1515/znb-1986-0108.

  27. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809 (1947). https://doi.org/10.1103/PhysRev.71.809

    Article  MATH  ADS  Google Scholar 

  28. Vinet, P., Ferrante, J., Rose, J.H., Smith, J.R.: Compressibility of solids. J. Geophys. Res. Solid Earth 92(B9), 9319–9325 (1987). https://doi.org/10.1029/JB092iB09p09319

    Article  Google Scholar 

  29. Westbrook, J.H., Fleischer, R.L.: eds. Intermetallic Compounds, Structural Applications of. Vol. 3. Wiley, (2000)

  30. Chihi, T., Parlebas, J.C., Guemmaz, M.: First principles study of structural, elastic, electronic and optical properties of Nb2N and Ta2N compounds. Physica Status Solidi (b). 248(12), 2787–2792 (2011). https://doi.org/10.1002/pssb.201147033

    Article  ADS  Google Scholar 

  31. Born, M., Huang, K., Lax, M.: Dynamical theory of crystal lattices. Am. J. Phys. 23(7), 474–474 (1955). https://doi.org/10.1119/1.1934059

    Article  ADS  Google Scholar 

  32. Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., Meng, J.: Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Phys. Rev. B 76(5), 054115 (2007). https://doi.org/10.1103/PhysRevB.76.054115

    Article  ADS  Google Scholar 

  33. Sinko, G.V., Smirnow, N.A.: J. Phys. Condens. Matter. (14) 69897006 (2002)

  34. Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. Oxford University Press. (1985)

  35. Chen, X.Q., Niu, H., Li, D., Li, Y.: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 19(9), 1275–1281 (2011). https://doi.org/10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  36. Chen, X.Q., Niu, H., Franchini, C., Li, D., Li, Y.: Hardness of T-carbon: Density functional theory calculations. Phys. Rev. B 84(12), 121405 (2011). https://doi.org/10.1103/PhysRevB.84.121405

    Article  ADS  Google Scholar 

  37. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine J. Sci. 45(367), 823–843 (1954). https://doi.org/10.1080/14786440808520496.

  38. Gherriche, A., Bouhemadou, A., Al-Douri, Y., Bin-Omran, S., Khenata, R., Hadi, M.A.: Ab initio exploration of the structural, elastic, electronic and optical properties of a new layered perovskite-type oxyfluoride: CsSrNb2O6F. Mater. Sci. Semicond. Process. 131, 105890 (2021). https://doi.org/10.1016/j.mssp.2021.105890

    Article  Google Scholar 

  39. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101(5), 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

    Article  ADS  Google Scholar 

  40. Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24(7), 909–917 (1963)

    Article  ADS  Google Scholar 

  41. Radjai, M., Bouhemadou, A., Maouche, D.: Structural, elastic, electronic and optical properties of the half-Heusler ScPtSb and YPtSb compounds under pressure. Condens. Matter Phys. 24(4), 43702 (2021). https://doi.org/10.5488/CMP.24.43702

    Article  Google Scholar 

  42. Kanchana, V., Vaitheeswaran, G., Svane, A., Delin, A.: First-principles study of elastic properties of CeO2, ThO2 and PoO2. J. Phys.: Condens. Matter 18(42), 9615 (2006)

    ADS  Google Scholar 

  43. Karaca, E., Karadaǧ, S., Tütüncü, H.M., Srivastava, G.P., Uǧur, Ṣ: First-principles investigation of superconductivity in the body-centred tetragonal. Phil. Mag. 96(19), 2059–2073 (2016). https://doi.org/10.1080/14786435.2016.1192723

    Article  ADS  Google Scholar 

  44. Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67–74 (2003). https://doi.org/10.1016/S0257-8972(02)00593-5

    Article  Google Scholar 

  45. Alouani, M., Albers, R.C., Methfessel, M.: Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B 43(8), 6500 (1991). https://doi.org/10.1103/PhysRevB.43.6500

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Radjai.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radjai, M., Bouhemadou, A. & Bitam, T. First-Principles Investigation of the Structural, Elastic and Thermodynamic Properties of CaRu2X2 (X = P, As) under Pressure. J Supercond Nov Magn 35, 2531–2544 (2022). https://doi.org/10.1007/s10948-022-06304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06304-7

Keywords

Navigation