Skip to main content
Log in

Structural Evaluation, Optical, and Dielectric Properties of Ba-Doped Ca4Ti3O10-Sintered Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the current study, the solid solution of (Ca1 − xBax)4Ti3O10, 0.00 ≤ x ≤ 0.075-sintered ceramics were synthesized through traditional mixed oxide solid state technique. The phase evolution, morphological, vibrational, and microwave dielectric properties of synthesized samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and impedance analyzer (1 MHz–3 GHz). The X-ray diffraction (XRD) profile shows the tetragonal I4/mcm crystal symmetry of the system. The surface morphology showed the existence of spherical and round-like micro-size structures. The stretching vibrational mode of O-H and Ti-O was recorded at 600 cm−1 and normal vibrational mode at 500 cm−1, respectively. Using UV-Vis spectroscopy, the optical band gap energy of (Ca1 − xBax)4Ti3O10-sintered ceramics is found at 1.967, 1.878, 1.749, and 1.613 eV for x = 0.00, 0.025, 0.05, and 0.075, respectively. At Optimum microwave dielectric properties of samples were recorded at 3-GHz frequency. The obtaining results have been suitable for the applications of microwave wireless communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suvorov, D., Valant, M., Jancar, B., Skapin, S.D.: Acta Chim. Slov. 48(1), 87–100 (2001)

    Google Scholar 

  2. Ishizaki, T., Fujita, M., Kagata, H., Miyake, H.: Microwave Theory Tech. 42, 2017–2022 (1994)

    Article  Google Scholar 

  3. Reaney, I.M., Iddles, D.: J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  4. Huang, C.L., Tseng, C.F., Yang, W.R., Yang, T.J.: J. Am. Ceram. Soc. 91(7), 2201–2204 (2008)

    Article  Google Scholar 

  5. Sebastian, M.T.: Dielectric materials for wireless communication, Oxford, UK, Elsevier, pp. 12–14, (2008)

  6. Abbas, M., Ullah, R., Ullah, K. et al.: Ceram. Int. 47(21), 30129–30136 (2021)

  7. Reaney, I., Mand, I.D.: J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  8. Abid, Z., Sarir, U., Nasir, M.: Iran. J. Sci. Tech. Tranc. A: Sci 367–371 (2020)

  9. Gu, D., Qin, Y., Wen, Y., et al.: J. Alloy. Compd. 695, 2224–2231 (2017)

    Article  Google Scholar 

  10. Huang, C.L., Pan, C.L., Shium, S.J.: Mater. Chem. Phys. 78, 111–115 (2003)

    Article  Google Scholar 

  11. Huang, C.L., Liu, S.S.: Jap. J. App. Phy. 46(1R), 283 (2007)

    Article  ADS  Google Scholar 

  12. Chase Jr., M.W., Davies, C.A., Downey Jr., J.R. et al.: J. Phys. Chem. Ref. Data 14(1), 942 (1985)

  13. Taylor, R.W., Schmalzried, H.: J. Phys. Chem. 68, 2444–2449 (1964)

    Article  Google Scholar 

  14. Wise, P.L., Reaney, I.M., Lee, W.E. et al.: Euro. J. Ceram. Soc. 21, 1723–1726 (2001)

  15. King, E.G.: J. Am. Chem. Soc. 77, 2150–2152 (1955)

    Article  Google Scholar 

  16. Barin, I.: Thermochemical data of pure substances, VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Germany, (1993)

  17. Drews, A.R., Wong-Ng, W., Roth, R.S., Vanderah, T.A.: Mater. Res. Bull. 31(2), 153–162 (1996)

  18. Jobin, V., Tony, J., Surendran, K.P., Rajan, T.P.D., Sebastian M.T.: Royal Soc.Chem. 44, 5146–5152 (2015)

  19. Dou, Z., Wang, G., Jiang, J., Zhang, F., Zhang, T.: J. Adv. Cerm. 6(1), 20–26 (2017)

  20. Kumar, J., Gupta, N.: Wireless Pers. Commun. 75(2), 1029–1049 (2014)

    Article  Google Scholar 

  21. Mallik, P.K., Biswal, G., Patnaik, S.C., Senapati, S.K.: IOP Conf. Ser. Mater. Sci. Eng. 75(012005), 1–6 (2015)

    Google Scholar 

  22. Cui, Z., Luo, Yi., Jin, Yu., Yujing, Xu.: J. Phys. E 134, 114873 (2021)

    Article  Google Scholar 

  23. Raja, S., Bellan, C.S., Sundaram, S., Rajamani, R.: J. Optik 127, 3200–3205 (2016)

    Article  ADS  Google Scholar 

  24. Cherdchom, S., Rattanaphan, T., Chanadee, T.: Adv. Mater. Sci. Eng. (2019)

  25. Shannon, R.D.: Acta crystallographica section A: Crystal physics, diffraction, theoretical and general crystallography. 32, 751–767 (1976)

  26. Dong, C.: J. Appl. Crystallogr. 32, 838–838 (1999)

    Article  Google Scholar 

  27. Zaman, A., Uddin, S., Mehboob, N., Ali, A.: Phys. Scr. 96(2), 025701 (2020)

    Article  ADS  Google Scholar 

  28. Ali, A., Uddin, S., Iqbal, Z., et al.: J. Market. Res. 11, 1828–1833 (2021)

    Google Scholar 

  29. Ji, C., Wang, J., Bai, X.: et al.: J. Ceram. Int. 0272–8842 (2021)

  30. Luo, T., et al.: J. Am. Ceram. Soc. 103, 1079–1087 (2020)

    Article  Google Scholar 

  31. Yi, W., et al.: J. Am. Ceram. Soc. 82, 325–330 (1999)

    Google Scholar 

  32. Zaman, A., Uddin, S., Mehboob, N., et al.: ACS Omega 7(5), 4667–4676 (2022)

    Article  Google Scholar 

  33. Wang, D., Guo, Z., Chen, Y., Hao, J., Liu, W.: Inorg. Chem. 46(19), 7707–7709 (2007)

  34. Dong, W., Zhao, G., Bao, Q., Gu, X.: Mater. Sci. 21(4), 583–585 (2015)

  35. Gralik, G., Zanelli, C., Raupp-Pereira, F. et al.: In Proceeding of 21 Congresso Brasileiro de Engenharia Materiais, Brazil, pp. 504–510 (2014)

  36. Kim, E.S., Park, H.S., Yoon, K.H.: J. Mater. Chem. Phys. 79, 213–217 (2003)

    Article  Google Scholar 

  37. Chinn, R.: Grain sizes of ceramics by automatic image analysis. J. Am. Ceram. Soc. 77, 589–592 (1994)

    Article  Google Scholar 

  38. Uchino, K.J.: Transaction 8, 107–115 (1989)

    Google Scholar 

  39. Jin, L., Luo, W., Hou, L., et al.: J. Eur. Ceram. Soc. 39, 295–304 (2019)

    Article  Google Scholar 

  40. Cui, Z., Wang, M., Lyu, N., et al.: J. Super Lattices Microstruct. 152, 106852 (2021)

    Article  Google Scholar 

  41. Yao, Y., Li, S., Jia, Y., Xie, S.: J. Alloys Compd. 651, 273–277 (2015)

    Article  Google Scholar 

  42. Freer, R., Azough, F.: J. Eur. Ceram. Soc. 28, 1433–1441 (2008)

    Article  Google Scholar 

  43. Liu, B., et al.: J. Eur. Ceram. Soc. 41, 5170–5175 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asad Ali or Abid Zaman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Zaman, A., Khan, M.K. et al. Structural Evaluation, Optical, and Dielectric Properties of Ba-Doped Ca4Ti3O10-Sintered Ceramics. J Supercond Nov Magn 35, 1987–1993 (2022). https://doi.org/10.1007/s10948-022-06300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06300-x

Keywords

Navigation