Skip to main content
Log in

The Effect of Magnetic Field Heat Treatment on Magnetic Properties of Fe57Co5Ni20Si4B14 amorphous alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We used the single copper roll melt-spinning technique to prepare complete Fe57Co5Ni20Si4B14 amorphous alloys. The effect of magnetic field heat treatment on the crystallization behavior, DC-bias characteristic and constant magnetic permeability properties of Fe57Co5Ni20Si4B14 amorphous alloys magnetic cores was investigated. After magnetic field heat treatment, the amorphous alloy cores and slightly nanocrystalline show lower coercivity and good effective magnetic permeability is about 2690, from 1 to 1000 kHz. After magnetic field heat treatment at 623 K, the magnetic core has the best performance that shown 98.8% DC-bias performance in the frequency range from 1 to 1000 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herzer, G.: Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013)

    Article  ADS  Google Scholar 

  2. Li, Y., Shen, N., Wu, Y., Zhang, S., He, Z., Li, F., Hui, X.: High Bs Fe-B-P-C-Cu nanocrystalline alloy with longtime annealing stability and low heating rate sensitivity. J. Magn. Magn. Mater. 543, 168623 (2022)

  3. Wang, A., Zhao, C., Men, H., He, A., Chang, C., Wang, X., Li, R.-W.: Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability. J. Alloy. Compd. 630, 209–213 (2015)

    Article  Google Scholar 

  4. J. Xu, Y. Yang, Q. Yan, F. Hou, C. Fan, G. Wang, T. Luo, Effects of the substitution of Si by P on crystallization behavior, soft magnetic properties and bending ductility of FeSiBCuPC alloys. J. Alloy. Compd. 816, 152534 (2020)

  5. Chang, J., Zhan, T., Peng, X., Li, J., Yang, Y., Xu, J., Hong, D., Jin, H., Wang, X, Ge, H.: Improved permeability and core loss of amorphous FeSiB/Ni-Zn ferrite soft magnetic composites prepared in an external magnetic field. J. Alloys Compd. 886, 161335 (2021)

  6. Gheiratmand, T., Hosseini, H.R.M.: Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. J. Magn. Magn. Mater. 408, 177–192 (2016)

    Article  ADS  Google Scholar 

  7. Guo, Z., Wang, J., Chen, W., Chen, D., Sun, H., Xue, Z., Wang, C.: Crystal-like microstructural Finemet/FeSi compound powder core with excellent soft magnetic properties and its loss separation analysis. Mater. Des. 192, 108769 (2020)

  8. Mushnikov, N.V., Potapov, A.P., Shishkin, D.A., Protasov, A.V., Golovnya, O.A., Shchegoleva, N.N., Gaviko, V.S., Shunyaev, K.Y., Bykov, V.A., Starodubtsev, Y.N., Belozerov, V.Y.: Magnetic properties and structure of nanocrystalline FINEMET alloys with various iron contents. Phys. Met Metallogr. 116, 663-670 (2015)

  9. Lopez, G. P. Fabietti, L.M., Condó, A.M., Urreta, S.E.: Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning. J. Magn. Magn Mater. 322, 3088–3093 (2010)

  10. Guo, Y.B., Ma, L., Jia, C.L., Li, X., Xie, W.H., Zhao, Z.J.: Exchange coupling and dipolar interactions in FINEMET/Fe50Pd50 composites ribbons. J. Magn. Magn. Mater. 530, 0304–8853 (2021)

    Article  Google Scholar 

  11. Modak, S.S., Ghodke, N., Mazaleyrat, F., Bue, M.L., Varga, L.K., Gupta, A. and Kane, S.N., 2008. Structural and magnetic investigation of gradually devitrified Nanoperm alloys. J. Magn. Magn. Mater. 320, e828–e832 (2008)

  12. McHenry, M.E., Johnson, F., Okumura, H., Ohkubo, T., Ramanan, V.R.V., Laughlin, D.E.: The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials. Scripta Mater. 48, 881–887 (2003)

    Article  Google Scholar 

  13. McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater Sci. 44, 291–433 (1999)

    Article  Google Scholar 

  14. Nematov, M.G., Kolesnikova, V., Evstigneeva, S.A., Alam, J., Yudanov, N.A., Samokhvalov, A.A., Andreev, N., Podgornaya, S.V., Soldatov, I., Schaefer, R., Rodionova, V., Panina, L.V.: Excellent soft magnetic properties in Co-based amorphous alloys after heat treatment at temperatures near the crystallization onset. J Alloys Compd. 890, 161740 (2022)

  15. Zanaeva, E.N., Bazlov, A.I., Milkova, D.A., Churyumov, A.Y., Inoue, A., Tabachkova, N.Y., Wang, F., Kong, F.L., Zhu, S.L.: High-Frequency soft magnetic properties of Fe-Si-BP-Mo-Cu amorphous and nanocrystalline alloys. J. Non. Cryst. Solids 526, 119702 (2019)

  16. Degens, A.J., Langedijk, J.J.M.: Integral approach to the protection of power transformers by means of a microprocessor. Int. J. Electr. Power Energy Syst. 7, 37–47 (1985)

    Article  Google Scholar 

  17. Taherzadeh, M., Hamida, M.A., Ghanes, M., Koteich, M.: A New Approach on Stator Flux Estimation of IPMSMs Considering Magnetic and Cross-Coupling Saturations. IFAC-PapersOnLine 53, 13763–13768 (2020)

    Article  Google Scholar 

  18. Lotfi, A.W., Wilkowski, M.A.: Issues and advances in high-frequency magnetics for switching power supplies. Proc. IEEE 89, 833–845 (2001)

    Article  Google Scholar 

  19. Xu, J., Liu, X., Wang, G., Luo, T., Wang, J., Lu, K., Yang, Y.: Crystallization behavior, soft magnetic properties and good bending ductility of high Fe content FeSiBCuPC alloys induced by composition design. J. Alloys Compd. 859, 157850 (2021)

  20. Zhao, C., Wang, A., Yue, S., Liu, T., He, A., Chang, C., Wang, X., Liu, C.-T.: Significant improvement of soft magnetic properties for Fe(Co)BPSiC amorphous alloys by magnetic field annealing. J. Alloy. Compd. 742, 220–225 (2018)

    Article  Google Scholar 

  21. Hou, F., Yang, Y., Luo, T., Wang, G., Fan, C., Xie, Z.: Effect of Ni substitution to Fe on amorphous nanocrystalline soft magnetic alloy. Physica B: Condensed Matter. 595, 412293 (2020)

  22. Li, F., Shen, B., Makino, A., Inoue, A.: Excellent soft-magnetic properties of (Fe,Co)–Mo–(P,C,B,Si) bulk glassy alloys with ductile deformation behavior. Appl. Phys. Lett. 91, 234101 (2007)

  23. Ting, L., Yuanzheng, Y., Chenfeng, F., Zhiwei, X., Jia, X., Guotai, W.: Crystallization behavior and magnetic properties for the Fe73(Si0.64B0.27P0.09)23+xCu1Nb3-x (x=0, 1 and 2) alloys. Physica B: Condensed Matter. 557, 99–102 (2019)

  24. Denisova, E., Kuzovnikova, L., Iskhakov, R., Kuzovnikov, A., Lepeshev, A., Nemtsev, I., Saunin, V., Telegin, S., Bondarenko, G., Mal‘tsev, V.: Bulk CoNiFe-SiB Amorphous and Nanostructured Alloys Produced by Plasma Spray Deposition and Dynamic Compaction: Formation of Soft Magnetic Properties. Phys. Procedia. 75, 1238–1243 (2015)

  25. Abrosimova, G.E., Aronin, A.S., Kholstinina, N.N.: On the determination of the volume fraction of the crystalline phase in amorphous-crystalline alloys. Phys. Solid State. 52, 445–451 (2010)

  26. Lashgari, H.R., Chu, D., Xie, S., Sun, H., Ferry, M., Li, S.: Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study. J. Non-Cryst. Solids 391, 61–82 (2014)

    Article  ADS  Google Scholar 

  27. Xu, H.-P., Wang, R.-W., Wei, D., Zeng, C.: Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores. J. Magn. Magn. Mater. 385, 326–330 (2015)

    Article  ADS  Google Scholar 

  28. He, A., Yue, S., Wang, A., Chang, C., Wang, X.: Dynamic magnetic characteristics and relaxation of Fe73. 5Cu1Nb3Si15. 5B7 nanocrystalline alloy under operating temperature and magnetizing frequency. J. Magn. Magn. Mater 443, 261–266 (2017)

  29. Zhang, C., Tao, P., Zhu, K., Chen, Y., Zhang, W., Yang, Y.: Study of Novel Fe-Based Amorphous/Nanocrystalline Soft Magnetic Powder Cores with NiCuZnFe2O4 Coating Layer. J. Supercond. Novel Magn. 34, 2389–2396 (2021)

    Article  Google Scholar 

  30. Wu, X., Xu, J., Huo, X., Chen, J., Zhang, Q., Huang, F., Li, Y., Su, H., Li, L.: Nb2O5-doped NiZnCo ferrite ceramics with ultra-high magnetic quality factor and low coercivity for high-frequency electronic devices. J. Eur. Ceram. Soc. 41, 5193–5200 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52071089), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515010886) and the Natural Science Foundation of Guangdong Province (Grant No. 2019B030302010).

Funding

National Natural Science Foundation of China,52071089,Yuanzheng Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzheng Yang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, H., Yang, Y., Luo, T. et al. The Effect of Magnetic Field Heat Treatment on Magnetic Properties of Fe57Co5Ni20Si4B14 amorphous alloys. J Supercond Nov Magn 35, 1499–1505 (2022). https://doi.org/10.1007/s10948-022-06245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06245-1

Keywords

Navigation