Skip to main content
Log in

Transmission Spectra in One-dimensional Defective Photonic Crystal Integrating Metamaterial and Superconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we present a study of one-dimensional defective photonic crystal, configured based on metamaterial and high-temperature superconductor. The proposed configurations are exploited in order to generate one or more defect transmission peaks in the photonic band gap. In the design procedure, the transfer matrix method is used to determine the transmission coefficient of the structure for transverse electric (TE) and transverse magnetic (TM) modes. Important parameters are targeted in the study of the performance of the proposed design which are the quality factor, the band gap width, and the ability to generate defect peaks in the band gap. Results obtained show the effects of parameters, such as thickness of the metamaterial, operating temperature and thickness of the superconductor, and thickness and type of the defect layer, on the improvements in the band gap width, on the number of band gaps, and on the tenability of the defect peak frequency. Also, the number of defect layers strongly influences the occurrence of more than one defect peak in the photonic band gap. The analysis is carried out using MATLAB software tool. The accuracy of the analysis is tested by comparing the computed results with published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gondek, E., Karasiński, P.: One-dimensional photonic crystals as selective back reflectors. Opt. Laser Technol. 48, 438–446 (2013)

    Article  ADS  Google Scholar 

  2. Taya, S., Doghmosh, N., Upadhyay, A.: Properties of defect modes and band gaps of mirror symmetric metal-dielectric 1D photonic crystals. Opt Quant Electron. 53, (2021)

  3. Wu, C.J., Chung, Y.H., Syu, B.J., Yang, T.J.: Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal. Progress In Electromagnetics Research. 102, 81–93 (2010)

    Article  Google Scholar 

  4. Yablononovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  5. Xiang, Y., Dai, X., Wen, S., Tang, Z., Fan, D.: Extending the zero-effective-phase photonic bandgap by one-dimensional ternary photonic crystals. Appl. Phys. B. 103, 897–906 (2011)

    Article  ADS  Google Scholar 

  6. Steven M Anlage.: The physics and applications of superconducting metamaterials. IOP Publishing. 13, 1–10 (2011)

  7. Aly, A.H., Sabra, W.: Superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Nov. Magn. 29(8), 1981–1986 (2016)

  8. Aly, A.H., Mohamed, D., Elsayed, H.A., Vigneswaran, D.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Superconductiv. Novel Magnet. 31(3), (2018)

  9. Srivastava S. K., Aghajamali A.: Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor. Optica Applicata, 49(1), (2019)

  10. Mamri, B., Barkat, O.: Design of a selective filter based on one-dimensional superconductor photonic crystal. J. Supercond. Novel Magn. (2019). https://doi.org/10.1007/s10948-019-5118-0

    Article  Google Scholar 

  11. Chettah, C., Barkat, O., Chaabi, A.: Tunable properties of optical selective filters based on one-dimensional plasma superconductor photonic crystal. J. Superconductiv. Novel Magnet. 1–10. (2021)

  12. Zaky, Z.A., Aly, A.H.: Theoretical study of a tunable low-temperature photonic crystal sensor using dielectric-superconductor nanocomposite layers. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05584-1

    Article  Google Scholar 

  13. Newman, N., Lyons, W.G.: High-temperature superconducting microwave devices - fundamental issues in materials, physics, and engineering. J Superconductiv. 6(3), 119–160 (1993)

  14. Soltani, A., Ouerghi, F., AbdelMalek, F., Haxha, S.: Comparative study of one-dimensional photonic crystal heterostructure doped with a high and low-transition temperature superconducting for a low-temperature sensor. Opt. Commu. (2019). https://doi.org/10.1016/j.optcom.2019.04.056

    Article  Google Scholar 

  15. Lee, H.M., Wu, J.C.: Transmittance spectra in one-dimensional superconductor-dielectric photonic crystal. J. Appl. Phys. 107, 09E149–09E149–3 (2010)

  16. Chung-An, H., Jia-Wei, L., Wu, C.J., Tzong-Jer, Y., Su-Lin, Y.: Effects of super-conducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Commun. 157, 54–57 (2013)

    Article  ADS  Google Scholar 

  17. Aly, A.H.: Metallic and superconducting photonic crystal. J. Supercond. Nov. Magn. 21, 421–425 (2008)

    Article  Google Scholar 

  18. Barkat, O., Benghalia, A.: Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxial anisotropic media. Journal of Infrared, Millimeter, and Terahertz Waves. 30(10), 1053–1066 (2009)

    Article  Google Scholar 

  19. Barkat, O.: Theoretical study of superconducting annular ring microstrip antenna with several dielectric layers. Progress in electromagnetics research. 127, 31–48 (2012)

  20. Tang, L., Gao, L., Fang, J.: Characterization for defect modes of one-dimensional photonic crystals containing metamaterials. Chin. Opt. Lett. 6, 201–203 (2008)

    Article  Google Scholar 

  21. Lotfi, E., Jamshidi-Ghaleh, K., Moslem, F., Masalehdan, H.: Comparison of photonic crystal narrow filters with metamaterials and dielectric defects. Europ. Phys. J. D. 60, 369–372 (2010)

    Article  ADS  Google Scholar 

  22. Wang, L.G., Chen, H., Zhu, S.Y.: Omnidirectional gap and defect mode of one-dimensional photonic crystals with single negative materials. Phys. Rev. 70, 245102 (2004)

  23. Oraizi, H., Abdolali, A.: Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures. IET Microw. Antennas Propag. 4, 1870–1879 (2010)

    Article  Google Scholar 

  24. Jen, Y-J., Lee, C-C., Lu, K. H., Jheng, C. Y., Chen, Y, J.: Fabry-Perot based metal-dielectric multilayered filters and metamaterials. Optical Society of America OSA. 23, (2015)

  25. Srivastava, S.K., Aghajamali, A.: Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials. Physica B 489, 67–72 (2016)

    Article  ADS  Google Scholar 

  26. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  27. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  ADS  Google Scholar 

  28. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  29. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  30. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  31. Lee, K.J., Wu, J.W., Kim, K.: Defect modes in a one-dimensional photonic crystal with a chiral defect layer. Optic. Mater. Express. 4, 2542–2550 (2014)

    Article  ADS  Google Scholar 

  32. Yeh, P.: Optical waves in layered media. Wiley, New York (1988)

    Google Scholar 

  33. Barkat, O.: Theoretical investigation of transmission and dispersion properties of one dimensional photonic crystal. J. Elect. Electro. Eng. 3(2), 12–18 (2015)

    Article  Google Scholar 

  34. Tinkham, M.: Introduction to superconductivity, 2nd edn. Mc-Graw-Hill, New York (1996)

    Google Scholar 

  35. Srivastava S. K., Aghajamali A. : Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high- temperature superconductor. J. Superconduct. Novel Magnet. 30(2), (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawdha Thabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabet, R., Barkat, O. Transmission Spectra in One-dimensional Defective Photonic Crystal Integrating Metamaterial and Superconductor. J Supercond Nov Magn 35, 1473–1482 (2022). https://doi.org/10.1007/s10948-022-06195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06195-8

Keywords

Navigation