Skip to main content
Log in

Fe substitution for Mn in Rhombohedral La0.8Sr0.2Mn1−xFexO3 — the Structural, Magnetic, and Magnetocaloric Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of Fe doping on the structural, magnetic, and magnetocaloric properties was studied on La0.8Sr0.2Mn1−xFexO3 (x = 0.00, 0.10, 0.15) manganites prepared by solid-state reaction method. Doping with iron did not change the original rhombohedral structure of the La0.8Sr0.2MnO3 compound but increased the unit cell parameters and microstrain of the crystal structure which was accounted for by the presence of a certain amount of Fe4+ ions. The samples showed a paramagnetic-ferromagnetic phase transition with the transition temperature decreasing with increasing iron content. In the paramagnetic temperature range, the formation of magnetic clusters was suggested from isothermal magnetization data. It was found that TC, the magnetic entropy change \(S_{M}^{\max }\), and the relative cooling power (RCP) decreased with increasing Fe content. RCP values were found to vary between 210 and 240 Jkg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coey, J.M.D., Viret, M., von Molnár, S.: Mixedvalence manganites. Adv. Phys. 48, 167–293 (1999). https://doi.org/10.1080/000187399243455

    Article  ADS  Google Scholar 

  2. Phan, M.-H., Yu, S.-C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  ADS  Google Scholar 

  3. Kossi, S.E., Mnefgui, S., Dhahri, J., Hlil, E.K.: Critical behavior and its correlation with magnetocaloric effect in La0.7Sr0.25Na0.05Mn(1–x)TixO3 (0≤x≤0.1) manganite oxide. Ceram. Int. 41(7), 8331–8340 (2015). https://doi.org/10.1016/j.ceramint.2015.03.009

    Article  Google Scholar 

  4. Heo, C., Lee, M., Yu, S.-C., Kim, K., Kim, J., Lee, B.W.: Magnetocaloric effect of perovskite manganites of La0.8A0.2MnO3 (A = Ca, Sr, Ba). J. Korean Phys. Soc. 57(6), 1893–1896 (2010). https://doi.org/10.3938/jkps.57.1893

    Article  Google Scholar 

  5. Mitrofanov, V.Y., Estemirova, S.K., Kozhina, G.A.: Effect of oxygen content on structural, magnetic and magnetocaloric properties of (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ. J. Magn. Magn. Mater. 476, 199–206 (2019). https://doi.org/10.1016/j.jmmm.2018.12.097

    Article  ADS  Google Scholar 

  6. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  7. Kurbakov, A.I., Zakhvalinskii, V.S., Laiho, R.: Crystal structure and magnetic ordering of manganites La0.7Ca0.3Mn1-yFeyO3. Phys. Solid State. 49, 725–729 (2007). https://doi.org/10.1134/S106378340704021X

    Article  ADS  Google Scholar 

  8. Kumar, N., Kishan, H., Rao, A., Awana, V.P.S.: Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0≤ x≤1). J. Alloy. Compd. 502, 283–288 (2010). https://doi.org/10.1016/j.jallcom.2010.04.187

    Article  Google Scholar 

  9. Nisha, P., Pillai, S.S., Darbandi, A., Varma, M.R., Suresh, K.G., Hahn, H.: Critical behaviour and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1-xFexO3 (x = 0.05, 0.2) synthesized by nebulized spray pyrolysis. Mater. Chem. Phys. 136, 66–74 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.029

    Article  Google Scholar 

  10. Grigor’yev, I.S., Meylikhova, E.Z.: Fizicheskiye velichiny: Spravochnik [Physical quantities: Handbook]. Energoatomizdat Publ., Moscow (1991)

  11. Barik, S.K., Krishnamoorthi, C., Mahendiran, R.: Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1-xFexO3 (0.05≤x≤0.20). J. Magn. Magn. Mater. 323, 1015–1021 (2011). https://doi.org/10.1016/j.jmmm.2010.12.007

    Article  ADS  Google Scholar 

  12. Mukadam, M.D., Yusuf, S.M.: Magnetocaloric effect in the La0.67Ca0.33Mn0.9Fe0.1O3 perovskite over a broad temperature range. J. Appl. Phys. 105, 063910 (2009). https://doi.org/10.1063/1.3098260

    Article  ADS  Google Scholar 

  13. Mizusaki, J., Yonemura, Y., Kamata, H., Ohyama, K., Mori, N., Takai, H., Tagawa, H., Dokiya, M., Naraya, K., Sasamoto, T., Inaba, H., Hashimoto, T.: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ion. 132, 167–180 (2000). https://doi.org/10.1016/S0167-2738(00)00662-7

    Article  Google Scholar 

  14. Alonso, J.A., Martınez-Lope, M.J., Casais, M.T., MacManus-Driscoll, J.L., de Silva, P. S. I. P. N., Cohen, L.F., Fernandez-Dıaz, M.T.: Non-stoichiometry, structural defects and properties of LaMnO3+δ with high d values (0.11≤δ≥0.29). J. Mater. Chem. 7(10), 2139–2144 (1997). https://doi.org/10.1039/A704088A

  15. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  16. Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). https://doi.org/10.1016/j.solidstatesciences.2022.106806

    Article  Google Scholar 

  17. Estemirova, S.K., Mitrofanov, V.Y., Uporov, S.A., Kozhina, G.K.: Magnetocaloric properties of Fe-substituted La–Sr-manganites. Solid State Sci. 124, 106806 (2022)

  18. Lampen, P.J., Zhang, Y., Phan, T.-L., Zhang, P., Yu, S.-C., Srikanth, H., Phan, M.-H.: Magnetic phase transitions and magnetocaloric effect in La0.7Ca0.3Mn1-xFexO3 0.00 ≤ x ≤ 0.07 manganites. J. Appl. Phys. 112, 113901 (2012). https://doi.org/10.1063/1.4768175

    Article  ADS  Google Scholar 

  19. Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E.K., Dhahri, J.: Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1-xFexO3 compounds with 0 ≤ x ≤0.1. J. Alloys Compd. 550, 358–364 (2013). https://doi.org/10.1016/j.jallcom.2012.10.087

    Article  Google Scholar 

  20. Yanchevskii, O.Z., V’yunov, O.I., Belous, A.G.: Crystallographic, electrical, and magnetic properties of the system La0.7Sr0.3Mn1−xFexO3. Low Temp. Phys. 32, 134–138 (2006). https://doi.org/10.1063/1.2171513

    Article  ADS  Google Scholar 

  21. Simopoulos, A., Pissas, M., Kallias, G., Devlin, E., Moutis, N., Panagiotopoulos, I., Niarchos, D., Christides, C., Sonntag, R.: Study of Fe-doped La1-xCaxMnO3 (x≃1/3) using Mössbauer spectroscopy and neutron diffraction. Phys. Rev. B 59, 1263 (1999). https://doi.org/10.1103/PhysRevB.59.1263

    Article  ADS  Google Scholar 

  22. Othmani, S., Blel, R., Bejar, M., Sajieddine, M., Dhahri, E., Hlil, E.K.: New complex magnetic materials for an application in Ericsson refrigerator. Solid State Commun. 149, 969–972 (2009). https://doi.org/10.1016/j.ssc.2009.04.020

    Article  ADS  Google Scholar 

  23. Hcini, S., Boudard, M., Zemni, S., Oumezzine, M.: Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1-xFexO3 manganites. Ceram. Int. 40, 16041–16050 (2014). https://doi.org/10.1016/j.ceramint.2014.07.140

    Article  Google Scholar 

  24. Sun, J.R., Rao, G.H., Shen, B.G., Wong, H.K.: Doping effects arising from Fe and Ge for Mn in La0.7Ca0.3MnO3. Appl. Phys. Lett. 73, 2998 (1998). https://doi.org/10.1063/1.122656

    Article  ADS  Google Scholar 

  25. Fatnassi, D., Rehspringer, J.L., Hlil, E.K., Niznansky, D., Ellouze, M., Elhalouani, F.: Structural and Magnetic Properties of Nanosized La0.8Ca0.2Mn1−xFexO3 Particles (0 ≤ x ≤ 0.2) Prepared by Sol-Gel Method. J. Supercond. Nov. Magn. 28(8), 2401–2408 (2015). https://doi.org/10.1007/s10948-015-3030-9

    Article  Google Scholar 

  26. Souza Filho, A.G., Faria, J.L.B., Guedes, I., Sasaki, J.M., Freire, P.T.C., Freire, V.N., Mendes Filho, J., Xavier Jr., M.M., Cabral, F.A.O., de Araujo, J.H., da Costa, J.A.P.: Evidence of magnetic polaronic states in La0.70Sr0.30Mn1-xFexO3 manganites. Phys. Rev. B 67, 052405 (2003). https://doi.org/10.1103/PhysRevB.67.052405

  27. Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B. 51, 14103–14109 (1995). https://doi.org/10.1103/PhysRevB.51.14103

    Article  ADS  Google Scholar 

  28. Banerjee, B.K.: On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12(1), 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  29. Oesterreicher, H., Parker, F.T.: Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys. 55, 4334–4338 (1984). https://doi.org/10.1063/1.333046

    Article  ADS  Google Scholar 

  30. Gschneidner, K.A., Jr., Pecharsky, V.K.: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  ADS  Google Scholar 

  31. Ho, T.A., Thanh, T.D., Ho, T.O., Phan, M.H., Phan, T.-L., Yu, S.C.: Magnetic properties and magnetocaloric effect in Fe-doped La0.6Ca0.4MnO3 with short-range ferromagnetic order. J. Appl. Phys. 117(17), 17A724 (2015). https://doi.org/10.1063/1.4915103

    Article  Google Scholar 

  32. Baazaoui, M., Boudard, M., Zemni, S.: Magnetocaloric properties in Ln0.67Ba0.33Mn1−xFexO3 (Ln=La or Pr) manganites. Mater. Lett. 65, 2093–2095 (2011). https://doi.org/10.1016/j.matlet.2011.04.051

    Article  Google Scholar 

  33. Smith, A., Bahl, C.R.H., Bjørk, R., Engelbrecht, K., Nielsen, K.K., Pryds, N.: Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012). https://doi.org/10.1002/aenm.201200167

    Article  Google Scholar 

  34. Sandeman, K.G.: Magnetocaloric materials: The search for new systems. Scr. Mater. 67, 566–571 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.045

    Article  Google Scholar 

  35. Gottschall, T., Skokov, K.P., Fries, M., Taubel, A., Radulov, I., Scheibel, F., Benke, D., Riegg, S., Gutfleisch, O.: Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019). https://doi.org/10.1002/aenm.201901322

    Article  Google Scholar 

  36. Moreno-Ramírez, L.M., Franco, V.: Reversibility of the magnetocaloric effect in the Bean-Rodbell model. Magnetochemistry 7(5), 60 (2021). https://doi.org/10.3390/magnetochemistry7050060

    Article  Google Scholar 

  37. Kitanovski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A.: Magnetocaloric energy conversion: from theory to applications. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  38. Griffith, L.D., Mudryk, Y., Slaughter, J., Pecharsky, V.K.: Material-based figure of merit for caloric materials. J. Appl. Phys. 123, 034902 (2018). https://doi.org/10.1063/1.5004173

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was carried out according to the state assignment for IMET UB RAS using equipment of Collaborative usage center “Ural-M” and supported by Act 211 the Government of the Russian Federation, contract № 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kh. Estemirova.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estemirova, S.K., Mitrofanov, V.Y., Uporov, S.A. et al. Fe substitution for Mn in Rhombohedral La0.8Sr0.2Mn1−xFexO3 — the Structural, Magnetic, and Magnetocaloric Properties. J Supercond Nov Magn 35, 1251–1259 (2022). https://doi.org/10.1007/s10948-022-06188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06188-7

Keywords

Navigation