Skip to main content
Log in

High Curie Temperatures and Ferromagnetism Formation in Cr-substituted Oxide Lithium Compound

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, we investigated the electronic and magnetic properties of pure and Cr-doped \(Li_{2}O\) semiconductor within the framework of density functional theory (DFT) with the Korringa-Kohn-Rostoker method combined with the coherent potential approximation (KKR-CPA). The pure \(Li_{2}O\) compound proved to be an intrinsic semiconductor with an indirect band gap of 4.74 eV. However, Cr-doped \(Li_{2}O\) (\(Li_{2}O_{1-x}Cr_{x})\) showed the characteristics of a metal with a spin polarization at the Fermi level less than 100%. \(Li_{2}O_{1-x}Cr_{x}\) exhibits a ferromagnetic stable phase originating from strong hybridization existing between the d-orbitals of Cr and that of Oxygen and total magnetic moments ranging from −0.383 \(\mu _{B}\) to −0.912 \(\mu _{B}\) for a concentration in the interval between 10% and 25%, respectively. The formation energy was also been calculated to study the stability of the pure and doped compound. Finally, the value of the Curie temperature, which reaches 780 (K), exceeds the ambient temperature, revealing the potential use of this doped material for new spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62(8), R4790(R) (2000)

    Article  ADS  Google Scholar 

  2. Shao, T., Liu, S., Zhang, F.: Electronic structure and optical properties of Cudoped \(SnO_{2}\). FERROELECTRICS 547, 137–147 (2019)

    Article  Google Scholar 

  3. Munekata, H., Ohno, H., von Molnar, S., Segmüller, A., Chang, L.L., Esaki, L.: Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 63, 1849 (1989)

    Article  ADS  Google Scholar 

  4. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. SCIENCE 287(5455), 1019–1022 (2000)

    Article  ADS  Google Scholar 

  5. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9(12), 965 (2010)

    Article  ADS  Google Scholar 

  6. Droghetti, A., Sanvito, S.: Electron doping and magnetic moment formation in N-and C-doped MgO. App. Phys. Lett. 94(25), 252505 (2009)

  7. Saini, H.S., Kashyap, M.K., Kumar, M., Thakur, J., Singh, M., Reshak, A.H., Saini, G.S.S.: Generating magnetic response and half-metallicity in GaP via dilute Ti-doping for spintronic applications. J. Alloy. Compd. 649, 184–189 (2015)

    Article  Google Scholar 

  8. Bounouala, Z., Goumrhar, F., Drissi, L.B., Ahl Laamara, R.: Half-metallic behavior in zirconium carbide (ZrC) doped with Cr and Mn. Comput. Condens. Matter 27, e00553 (2021) 

  9. Sato, K., Katayama-Yoshida, H.: First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  10. Dietl, T., Ohno, H.: Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014)

    Article  ADS  Google Scholar 

  11. Goumrhar, F., Chafi, F.Z., Bahmad, L.: First principle calculations of electronic and magnetic properties of Cr doped HgSe. Physica B Condens. Matter. 570, 110–115 (2019)

    Article  ADS  Google Scholar 

  12. Rami, R., Rkhioui, N., Ahl Laamara, R., Drissi, L.B.: Electronic and magnetic properties of \(TiO_{2}\) (co)-doped with (V, Mn) Mater. Res. Express 4, 126513 (2017)

  13. Sato, K., Dederics, P.H., Katayama-Yoshida, H.: Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. EPL (Europhysics Letters) 61(3), 403 (2003)

  14. Drissi, L.B., Benyoussef, A., Saidi, E.H., Bousmina, M.: Monte Carlo simulation of magnetic phase transitions in Mn-doped ZnO. J. Magn. Magn. Mater. 323, 3001–3006 (2011)

    Article  ADS  Google Scholar 

  15. Hocker, J., Krisponeit, J.O., Schmidt, T., Falta, J., Flege, J.I.: The cubic-to-hexagonal phase transition of cerium oxide particles: dynamics and structure. Nanoscale 9(27), 9352–9358 (2017)

    Article  Google Scholar 

  16. De Vita, A., Manassidis, I., Lin, J.S., Gillan, M.J.: The Energetics of Frenkel Defects in \(Li_{2}0\) from First Principles. Europhys. Lett. 19(7), 605–610 (1992)

    Article  ADS  Google Scholar 

  17. Keen, D.A.: Disordering phenomena in superionic conductors. J. Phys.: Condens. Matter 14, R819–R857(2002)

  18. Islam, M.M., Bredow, T., Minot, C.: Theoretical Analysis of Structural, Energetic, Electronic, and Defect Properties of Li2O. J. Phys. Chem. B 110, 9413–9420 (2006)

    Article  Google Scholar 

  19. Kunc, K., Loa, I., Grzechnik, A., Syassen, K.: Li2O at high pressures: structural properties, phase-transition, and phonons. Phys. Stat. Sol. (b) 242(9), 1857–863 (2005)

  20. Masaki, N.M., Noda, K., Watanabe, H., Clemmer, R.G., Hollenberg, G.W.: Spectroscopic study of lithium oxide irradiated by fast neutrons. J. Nucl. Mater. 212–215, 908–911 (1994)

    Article  ADS  Google Scholar 

  21. Zhukovskii, Yu.F., Kotomin, E.A., Balaya, P., Maier, J.: Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: Comparison of DFT calculations and experimental studies. Solid State Sci. 10, 491–495 (2008)

    Article  ADS  Google Scholar 

  22. Albrecht, S., Reining, L.: Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li2O. Phys. Rev. B 55(16), 10278–0281 (1997)

    Article  ADS  Google Scholar 

  23. Moakafi, M., Khenata, R., Bouhemadou, A., Khachai, H., Amrani, B., Rached, D., Rérat, M.: Electronic and optical properties under pressure effect of alkali metal oxides. Eur. Phys. J. B 64, 35–42 (2008)

    Article  ADS  Google Scholar 

  24. Li, X.F., Chena, X.R., Meng, C.M., Ji, G.F.: Ab initio calculations of elastic constants and thermodynamic properties of Li2O for high temperatures and pressures. Solid State Commun. 139, 197–200 (2006)

    Article  ADS  Google Scholar 

  25. Johnson, C.E., Kummerer, K.R., Roth, E.: Ceramic Breeder Materials. J. Nucl. Mater. 155–157, 188–201 (1988)

    Article  ADS  Google Scholar 

  26. Wagner, E.L.: Ab initio versus CNDO Potential Surface Calculations for Li20 and A120. Theoret. Chim. Acta (Berl.) 32, 295–310 (1974)

    Article  Google Scholar 

  27. Talaty, E.R., Schwartz, A.K., Simons, G.: Simple ab Initio Studies of the Isomers of \(N_{2}H_{2}\), \(Li_{2}O\), \(C_{3}H_{4}\), and 03. J. Am. Chem. Soc. 97, 5 (1975)

    Article  Google Scholar 

  28. Langmi, H.W., Culligan, S.D., McGrady, G.S.: Hydrogen storage behaviour of \(Li_{3}N\) doped with \(Li_{2}O\) and \(Na_{2}O\). J. Power Sources 195, 2003–007 (2010)

  29. Kong, X., Yu, Y., Ma, S., Gao, T., Xiao, C., Chen, X.: Dissociation mechanism of H\(_{2}\) molecule on the \(Li_{2}O\)/hydrogenated-\(Li_{2}O\) (111) surface from first principles calculations. RSC Adv. 7, 35239 (2017)

    Article  ADS  Google Scholar 

  30. Gheribi, A.E., Seifitokaldani, A., Wu, P., Chartrand, P.: An ab initio method for the prediction of the lattice thermal transport properties of oxide systems: Case study of \(Li_{2}O\) and \(K_{2}O\). J. Appl. Phys. 118, 145101 (2015)

  31. Jaiganesh, G., Mathi Jaya, S.: Ab-Initio Study of Magnetic and Electronic Properties of Co/Ni Substituted \(Li_{2}O\). Int. Journal. Innov. Res. Sci. Eng. 2, 178-182 (2014)

  32. Chitnis, A., Chakraborty, B., Tripathi, B.M., Tyagi, A.K., Garg, N.: High pressure stability of lithium metatitanate and metazirconate: Insight from experiments ab-initio calculations. J. Nucl. Mater. 499, 334–343 (2018)

    Article  ADS  Google Scholar 

  33. Akai, H.: MACHIKANEYAMA2002v08, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka 560-0043, Japan

  34. Moruzzi, V.L., Janak, J.F., Williams, A.R.: Calculated Properties of Metals. Pergamon Press, New York (1978)

    Google Scholar 

  35. Long, J., Yang, L., Li, D.: First principles investigations of the physical properties of antifluorite \(Li_{2}O\) [CDATA[Li_{2}O]] under various pressures. Solid State Sci. 19, 12–18 (2013)

  36. Duan, Y., Sorescu, D.C.: Density functional theory studies of the structural, electronic, and phonon properties of \(Li_{2}O\) and \(Li_{2}CO_{3}\): Application to CO\(_{2}\) capture reaction. Phys. Rev. B 79, 014301 (2009)

  37. Vegard, L.: The constitution of the mixed crystals and the filling of space of the atoms. Z. Phys. 5, 17–26 (1921)

  38. Rasul, M.N., Anam, A., Sattar, M.A., Manzoor, A., Hussain, A.: DFT based structural, electronic and optical properties of \(B_{1-x}In_{x}P\) (x = 0.0, 0.25, 0.5, 0.75, 1.0) compounds: PBE-GGA vs. mBJ approaches. Chin. J. Phys. 56(6), 2659–2672 (2018)

  39. El-Achari, T., Goumrhar, F., Drissi, L.B., Ahl Laamara, R.: Exploration of electronic and magnetic properties of (T i, V , Cr, M, and Co)-doped CdS: a DFT study. (2021)

  40. Mediane, N., Goumrhar, F., Drissi, L.B., Htoutou, K., Laamara, R.A.: Enhanced Electronic and Magnetic Properties of Cr- and Mn-Doped GeC Zinc Blende. J. Supercond. Nov, Magn (2020)

  41. El-Achari, T., Goumrhar, F., Drissi, L.B., Ahl Laamara, R.: Structural, electronic and magnetic properties of Mn doped \(CeO_{2}\): An ab-initio study. Physica B: Condensed Matter 601, 412443 (2021)

  42. Jasiewicz, K., Cieslak, J., Kaprzyk, S., Tobola, J.: Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation. J. Alloys. Compd. 648, 307–12 (2015)

    Article  Google Scholar 

  43. Bondavalli, P.: Graphene and Spintronics, the Good Match?, in Graphene and Related Nanomaterials. Elsevier 137 6 (2018)

  44. Bergqvist, L., Dederichs, P.H.: “A theoretical study of half-metallic antiferromagnetic diluted magnetic semiconductors,” J. Phys.: Condens. Matter 19(21), 216220 (2007)

  45. Shahjahan, M., Toyoda, M., Oguchi, T.: “Ferromagnetic Half Metallicity in Doped Chalcopyrite Semiconductors \(CuAl_{1-x}A_{x}Se_{2}\) (A = 3 d Transition-Metal Atoms)”. J. Phys. Soc. Jpn. 83(9), 094702 (2014)

Download references

Acknowledgements

The authors would like to acknowledge the “Académie Hassan II des Sciences et Techniques”-Morocco for its financial support. The authors also thank the LPHE-MS, Faculty of Sciences, Mohammed V University in Rabat, Morocco for the technical support through computer facilities, where all the calculations have been performed.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mediane, N., Goumrhar, F., Drissi, L.B. et al. High Curie Temperatures and Ferromagnetism Formation in Cr-substituted Oxide Lithium Compound. J Supercond Nov Magn 35, 463–471 (2022). https://doi.org/10.1007/s10948-021-06071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06071-x

Keywords

Navigation