Skip to main content
Log in

Studies on Colossal Magnetoresistance Behaviour of Pr0.6Sr0.4MnO3/Pr0.5Ca0.5MnO3 Heterostructure Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Heterostructure bilayer thin films of Pr0.6Sr0.4MnO3/Pr0.5Ca0.5MnO3 were prepared by pulsed laser deposition, and the structural, magnetic and magnetotransport properties were studied, and the results were compared to that of Pr0.6Sr0.4MnO3 and Pr0.5Ca0.5MnO3 single-layer thin films. Structural analysis of the heterostructure reveals c-axis orientation for both the manganite layers. The heterostructure exhibits a higher metal-insulator transition temperature and a larger colossal magnetoresistance near room temperature than that of the single-layer counterparts. The electrical conduction above the metal-insulator transition could be explained within the realm of the adiabatic small polaron hopping mechanism, with lesser activation energies compared to the single-layer films. Magnetization measurements portray the presence of an unsaturated symmetric hysteresis loop for the heterostructure with the Curie temperature of ~270 K corresponding to the ferromagnetic ordering emanating from Pr0.6Sr0.4MnO3. These results could be qualitatively understood considering the combined effect of strain and ferromagnetic proximity of Pr0.6Sr0.4MnO3 with charge-ordered Pr0.5Ca0.5MnO3 manganite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dagotto, E., Hotta, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001). https://doi.org/10.1016/S0370-1573(00)00121-6

    Article  ADS  Google Scholar 

  2. Tomioka, Y., Tokura, Y.: Global phase diagram of perovskite manganites in the plane of quenched disorder versus one-electron bandwidth. Phys. Rev. B. 70, (2004). https://doi.org/10.1103/PhysRevB.70.014432

  3. Cohn, J.L.: Electrical and thermal transport in perovskite manganites. J. Supercond. Nov. Magn. 13, 291–304 (2000). https://doi.org/10.1023/A:1007712319111

    Article  ADS  Google Scholar 

  4. Mori, S., Chen, C.H., Cheong, S.-W.: Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81, 3972–3975 (1998). https://doi.org/10.1103/PhysRevLett.81.3972

    Article  ADS  Google Scholar 

  5. Kiryukhin, V.: Nanoscale structural correlations in magnetoresistive manganites. New J. Phys. 6, 1–18 (2004). https://doi.org/10.1088/1367-2630/6/1/155

    Article  MathSciNet  Google Scholar 

  6. A.-M. Haghiri-Gosnet, J.-P. Renard, CMR manganites: physics, thin films and devices, 2003. http://iopscience.iop.org/0022-3727/36/8/201.

  7. Prellier, W., Lecoeur, P., Mercey, B.: Colossal-magnetoresistive manganite thin films. J. Phys. Condens. Matter. 13, R915–R944 (2001). https://doi.org/10.1088/0953-8984/13/48/201

    Article  ADS  Google Scholar 

  8. Baisnab, D.K., Geetha Kumary, T., Satya, A.T., Mani, A., Janaki, J., Nithya, R., Vaidhyanathan, L.S., Janawadkar, M.P., Bharathi, A.: Intricacies of strain and magnetic field induced charge order melting in Pr0.5Ca0.5MnO3 thin films. J. Magn. Magn. Mater. 2823–2827 (323, 2011). https://doi.org/10.1016/j.jmmm.2011.06.024

  9. Geetha Kumary, T., Amaladass, E.P., Nithya, R., Mani, A.: Strain-enhanced colossal magnetoresistance in Pr0.6Sr0.4MnO3 thin films. J. Supercond. Nov. Magn. 29, 2685–2690 (2016). https://doi.org/10.1007/s10948-016-3590-3

    Article  Google Scholar 

  10. Martin, C., Maignan, A., Hervieu, M., Raveau, B.: Magnetic phase diagrams of L1-xAxMnO3 manganites (L=Pr,Sm;A=Ca,Sr). Phys. Rev. B. 60, 12191–12199 (1999). https://doi.org/10.1103/PhysRevB.60.12191

    Article  ADS  Google Scholar 

  11. Rößler, S., Harikrishnan, S., Naveen Kumar, C.M., Bhat, H.L., Elizabeth, S., Rößler, U.K., Steglich, F., Wirth, S.: Phase transition and anomalous low temperature ferromagnetic phase in Pr0.6Sr0.4MnO3 single crystals. J. Supercond. Nov. Magn. 205–208 (2009). https://doi.org/10.1007/s10948-008-0377-1

  12. Elleuch, F., Triki, M., Bekri, M., Dhahri, E., Hlil, E.K.: A-site-deficiency-dependent structural, magnetic and magnetoresistance properties in the Pr0.6Sr0.4MnO3 manganites. J. Alloys Compd. 620, 249–255 (2015). https://doi.org/10.1016/j.jallcom.2014.09.035

    Article  Google Scholar 

  13. Maheswar Repaka, D.V., Tripathi, T.S., Aparnadevi, M., Mahendiran, R.: Magnetocaloric effect and magnetothermopower in the room temperature ferromagnet Pr0.6Sr0.4MnO3. J. Appl. Phys. 112, (2012). https://doi.org/10.1063/1.4769876

  14. Gor’kov, L.P., Kresin, V.Z.: Mixed-valence manganites: Fundamentals and main properties. Phys. Rep. 400, 149–208 (2004). https://doi.org/10.1016/j.physrep.2004.08.003

    Article  ADS  Google Scholar 

  15. Laverdière, J., Jandl, S., Fournier, P.: Colossal magnetoresistance of Nd2/3Sr1/3MnO3 ultrathin films grown on charge-ordered Nd1/2Ca1/2MnO3 manganite. Phys. Rev. B. 84, (2011). https://doi.org/10.1103/PhysRevB.84.104434

  16. Venimadhav, A., Hegde, S., Prasad, V., Subramanyam, S.V.: Enhancement of magnetoresistance in manganite multilayers. J. Phys. D: Appl. Phys. 33, 2921–2926 (2000) http://iopscience.iop.org/0022-3727/33/22/308

    Article  ADS  Google Scholar 

  17. Li, H., Sun, J.R., Wong, H.K.: Enhanced low-field magnetoresistance in La2/3Ca1/3MnO3/Pr2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 80, 628–630 (2002). https://doi.org/10.1063/1.1445802

    Article  ADS  Google Scholar 

  18. Gopalarao, T.R., Ravi, S.: Study of electrical transport and magnetic properties of Nd0.7Sr0.3MnO3/Nd0.8Na0.2MnO3 bilayer thin films. J. Supercond. Nov. Magn. 31, 1149–1154 (2018). https://doi.org/10.1007/s10948-017-4275-2

    Article  Google Scholar 

  19. Wang, H.O., Chu, Z., Su, K.P., Tan, W.S., Huo, D.X.: Colossal magnetoresistance of Pr0.7Sr0.3MnO3 layer grown on charge-ordered La0.5Ca0.5MnO3 manganite layer. J. Alloys Compd. 689, 69–74 (2016). https://doi.org/10.1016/j.jallcom.2016.07.165

    Article  Google Scholar 

  20. Jirák, Z., Damay, F., Hervieu, M., Martin, C., Raveau, B., André, G., Bourée, F.: Magnetism and charge ordering in Pr0.5CaxSr0.5-xMnO3 (x=0.09 and 0.5). Phys. Rev. B. 61, 1181–1188 (2000). https://doi.org/10.1103/PhysRevB.61.1181

    Article  ADS  Google Scholar 

  21. Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y., Tokura, Y.: Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B. 53, R1689–R1692 (1996). https://doi.org/10.1103/PhysRevB.53.R1689

    Article  ADS  Google Scholar 

  22. Tokunaga, M., Miura, N., Tomioka, Y., Tokura, Y.: High-magnetic-field study of the phase transitions of R1-xCaxMnO3 (R=Pr,Nd). Phys. Rev. B. 57, 5259–5264 (1998). https://doi.org/10.1103/PhysRevB.57.5259

    Article  ADS  Google Scholar 

  23. Yamamoto, H., Murakami, T., Sakai, J., Imai, S.: Correlation between degree of crystallinity and transition field in electric or magnetic field-induced insulator–metal transition of Pr0.5Ca0.5MnO3 thin films. Solid State Commun. 142, 28–31 (2007). https://doi.org/10.1016/j.ssc.2007.01.042

    Article  ADS  Google Scholar 

  24. Prellier, W., Rauwel Buzin, E., Mercey, B., Simon, C., Hervieu, M., Raveau, B.: Strain effects in charge-ordered Pr0.5Ca0.5MnO 3 manganite thin films. in: J. Phys. Chem. Solids. 64, 1665–1669 (2003). https://doi.org/10.1016/S0022-3697(03)00253-1

    Article  ADS  Google Scholar 

  25. Mollah, S., Khan, Z.A., Shukla, D.K., Arshad, M., Kumar, R., Das, A.: Adiabatic small polaron-hopping conduction in Ln0.85Ca0.15MnO3 (Ln=Nd, Pr and Sm) perovskites. J. Phys. Chem. Solids. 69, 1023–1028 (2008). https://doi.org/10.1016/j.jpcs.2007.11.024

    Article  ADS  Google Scholar 

  26. Venkataiah, G., Reddy, P.V.: Electrical behavior of sol-gel prepared Nd0.67Sr 0.33MnO3 manganite system. J. Magn. Magn. Mater. 285, 343–352 (2005). https://doi.org/10.1016/j.jmmm.2004.07.051

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ms. DT Sunitha Rajkumari and Dr. S Ilango, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, for the XRD patterns of thin films. We also acknowledge UGC-DAE-CSR, Kalpakkam Node, for providing access to the 15-T cryogen-free magnetoresistance, SQUID Magnetometer and XRD facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awadhesh Mani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, V., Kumary, T.G., Amaladass, E.P. et al. Studies on Colossal Magnetoresistance Behaviour of Pr0.6Sr0.4MnO3/Pr0.5Ca0.5MnO3 Heterostructure Films. J Supercond Nov Magn 34, 1955–1960 (2021). https://doi.org/10.1007/s10948-021-05889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05889-9

Keywords

Navigation