Skip to main content
Log in

Magnetic and Mössbauer Effect Study of Ca-Sc Co-doped M-Type Strontium Hexaferrite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present study investigates the influence of Ca2+-Sc3+ co-dpoing on the magnetic properties of Sr1-x/12Cax/12Fe12-xScxO19 (x = 0.0 to 2.0) hexaferrites. The samples were prepared via a facile autocombustion technique followed by sintering in ambient air. X-ray powder diffraction patterns show the formation of the pure phase of M-type hexaferrite. The lattice parameters a and c increased with the Ca2+-Sc3+ doping. The compounds’ magnetic properties were assessed as a function of temperature (10–300 K) and field (up to 6T). A rapid decline in room temperature coercivity from 5458 to 373 Oe and remanence value from 37 to 13 emu/g and a moderate decline in saturation magnetization from 76.9 to 57 emu/g were observed with increasing doping content from x = 0.0 to 2.0. The phase transition temperature, corresponding to ferrimagnetic to conical, was observed below 100 K, which disappeared at low doping content. The temperature-dependent behavior of magnetization and coercivity is discussed in view of spin non-collinearity due to the change in magnetic anisotropy. The Curie temperature dropped from 769 K at x = 0 to 568 K at the maximum substitution of x=2.0. The room temperature Mossbauer spectral analysis confirmed the preferred occupancy of Sc3+ at the 4f2 site and the influence of Ca2+ on the isomer shift values of the 2b site. The increased quadrupole shift values with the substitution implied distortion in 2b bipyramidal symmetry. The observed changes in magnetic properties and hyperfine parameters are ultimately tied to the preferred occupancy of Sc3+ at the spin-down 4f2 site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eikeland, A.Z., Stingaciu, M., Mamakhel, A.H., Saura-Múzquiz, M., Christensen, M.: Enhancement of magnetic properties through morphology control of SrFe12O19 nanocrystallites. Sci. Rep. 8(1), 1–9 (2018)

    Article  Google Scholar 

  2. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Song, W.H.: Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320(21), 2746–2751 (2008)

    Article  ADS  Google Scholar 

  3. Ataie, A., Ponton, C.B., Harris, I.R.: Heat treatment of strontium hexaferrite powder in nitrogen, hydrogen and carbon atmospheres: a novel method of changing the magnetic properties. J. Mater. Sci. 31(20), 5521–5527 (1996)

    Article  ADS  Google Scholar 

  4. Kojima, H.: Fundamental properties of hexagonal ferrites with magnetoplumbite structure. Handb. Ferromagn. Mater. 3, 305–391 (1982)

    Google Scholar 

  5. Dang, T.M.H., Trinh, V.D., Bui, D.H., Phan, M.H., Huynh, D.C.: Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 3(2), 025015 (2012)

    Article  ADS  Google Scholar 

  6. Ashiq, M.N., Qureshi, R.B., Malana, M.A., Ehsan, M.F.: Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J. Alloys Compd. 617, 437–443 (2014)

    Article  Google Scholar 

  7. Soria, G.D., Jenus, P., Marco, J.F., Mandziak, A., Sanchez-Arenillas, M., Moutinho, F., et al.: Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study. Sci. Rep. 9, 11777 (2019)

    Article  ADS  Google Scholar 

  8. Lechevallier, L., Le Breton, J.M., Morel, A., Teillet, J.: Structural and magnetic properties of Sr1−xSmxFe12O19 hexagonal ferrites synthesised by a ceramic process. J. Alloys Compd. 359(1-2), 310–314 (2003)

    Article  Google Scholar 

  9. Rezlescu, N., Doroftei, C., Rezlescu, E., Popa, P.D.: Fine-grained erbium-doped strontium hexaferrite. Physica status solidi (a). 203(15), 3844–3851 (2006)

    Article  ADS  Google Scholar 

  10. Luo, H., Rai, B.K., Mishra, S.R., Nguyen, V.V., Liu, J.P.: Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324(17), 2602–2608 (2012)

    Article  ADS  Google Scholar 

  11. Bai, Y., Zhou, J., Gui, Z., Li, L.: J. Magn. Magn. Mater. 246, 140 (2002)

    Article  ADS  Google Scholar 

  12. Trusov, L.A., Gorbachev, E.A., Lebedev, V.A., Sleptsova, A.E., Roslyakov, I.V., Kozlyakova, E.S., Vasiliev, A.V., Dinnebier, R.E., Jansen, M., Kazin, P.E.: Ca–Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun. 54(5), 479–482 (2018)

    Article  Google Scholar 

  13. Shen, X., Liu, M., Song, F., Zhu, Y.: Effects of La–Zn substitution on microstructure and magnetic properties of strontium ferrite nanofibers. Applied Physics A. 104(1), 109–116 (2011)

    Article  Google Scholar 

  14. Kang, Y.M., Moon, K.S.: Magnetic properties of Ce–Mn substituted M-type Sr-hexaferrites. Ceram. Int. 41(10), 12828–12834 (2015)

    Article  Google Scholar 

  15. Hilczer, A., Łoś, S., Trybuła, Z., Pasińska, K., Pietraszko, A.: Dipolar glass-like dielectric response of nanocrystalline Sr0.95Nd0.05Fe12-xScxO19 hexaferrites. Applied Physics Letters. 112(10), 102903 (2018)

    Article  ADS  Google Scholar 

  16. Almessiere, M.A., Slimani, Y., Güngüneş, H., Baykal, A., Trukhanov, S.V., Trukhanov, A.V.: Manganese/yttrium codoped strontium nanohexaferrites: Evaluation of magnetic susceptibility and Mossbauer spectra. Nanomaterials. 9(1), 24 (2019)

    Article  Google Scholar 

  17. Polyko, D.D., Bashkirov, L.A., Trukhanov, S.V., Lobanovskii, L.S., Sirota, I.M.: Crystal structure and magnetic properties of high-coercivity Sr1−xPrxFe12−xZnxO19 solid solutions. Inorg. Mater. 47(1), 75–79 (2011)

    Article  Google Scholar 

  18. Qiao, L., You, L., Zheng, J., Jiang, L., Sheng, J.: The magnetic properties of strontium hexaferrites with La–Cu substitution prepared by SHS method. J. Magn. Magn. Mater. 318(1-2), 74–78 (2007)

    Article  ADS  Google Scholar 

  19. Wu, Z., Song, Y., Zhang, R., Shan, L., Dong, L., Zhang, X.: Crystal structure and magnetic properties of Gd–Cu substituted M-type Sr-hexaferrites synthesized by the co-precipitation method. Ferroelectrics. 546(1), 48–56 (2019)

    Article  Google Scholar 

  20. Yasmin, N., Iqbal, M.Z., Zahid, M., Gillani, S.F., Ashiq, M.N., Inam, I., et al.: Structural and magnetic studies of Ce-Zn doped M-type SrFe12O19 hexagonal ferrite synthesized by sol-gel auto-combustion method. Ceram. Int. 45(1), 462–467 (2019)

    Article  Google Scholar 

  21. Harris, V.G., Geiler, A., Chen, Y.J., Yoon, S.D., Wu, M.Z., Yang, A., Chen, Z.H., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321(14), 2035e2047 (2009)

    Article  Google Scholar 

  22. Gupta, S., Deshpande, S.K., Sathe, V.G., Siruguri, V.: Effect of scandium substitution on magnetic and transport properties of the M-type barium hexaferrites. J. Alloys Compd. 815, 152467 (2020)

    Article  Google Scholar 

  23. Wagner, T.R.: Preparation and crystal structure analysis of magnetoplumbite-type BaGa12O19. J. Solid State Chem. 136(1), 120–124 (1998)

    Article  ADS  Google Scholar 

  24. Cullity, B.D.: Elements of X-ray Diffraction. Addison-Wesley Publishing (1956)

  25. Halder, N.C., Wagner, C.N.J.: Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20(2), 312–313 (1966)

    Article  Google Scholar 

  26. Xavier, S., Thankachan, S., Jacob, B.P., Mohammed, E.M.: Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. Journal of nanoscience. 2013, Article ID 524380 (2013)

    Article  Google Scholar 

  27. Pradeep, A., Chandrasekaran, G.: FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Mater. Lett. 60(3), 371–374 (2006)

    Article  Google Scholar 

  28. Pereira, F.M.M., Junior, C.A.R., Santos, M.R.P., Sohn, R.S.T.M., Freire, F.N.A., Sasaki, J.M., et al.: Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1−xFe12O19). J. Mater. Sci. Mater. Electron. 19(7), 627–638 (2008)

    Article  Google Scholar 

  29. Thakur, A., Singh, R.R., Barman, P.B.: Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141(1), 562–569 (2013)

    Article  Google Scholar 

  30. Silva, W.M.S., Ferreira, N.S., Soares, J.M., Da Silva, R.B., Macêdo, M.A.: Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. J. Magn. Magn. Mater. 395, 263–270 (2015)

    Article  ADS  Google Scholar 

  31. Xiang, J., Shen, X., Song, F., Liu, M.: One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183(6), 1239–1244 (2010)

    Article  ADS  Google Scholar 

  32. Somogyvári, Z., Sváb, E., Krezhov, K., Kiss, L.F., Kaptas, D., Vincze, I., et al.: Non-collinear magnetic order in a Sc-substituted barium hexaferrite. J. Magn. Magn. Mater. 304(2), e775–e777 (2006)

    Article  Google Scholar 

  33. Ivanov, V.Y., Balbashov, A.M., Mukhin, A.A., Iskhakova, L.D., Voronchikhina, M.E.: Magnetic and magnetoelectric properties of substituted M-type SrScxFe12–xO19 hexaferrites. J. Exp. Theor. Phys. 124(4), 604–611 (2017)

    Article  ADS  Google Scholar 

  34. Zhang, W., Zhu, Q., Tang, R., Zhou, H., Zhang, J., Jiang, J., et al.: Temperature dependent magnetic properties of conical magnetic structure M-type hexaferrites BaFe10.2Sc1.8O19 and SrFe10.2Sc1.8O19. J. Alloys Compd. 750, 368–374 (2018)

    Article  Google Scholar 

  35. Tokunaga, Y., Kaneko, Y., Okuyama, D., Ishiwata, S., Arima, T., Wakimoto, S., et al.: Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105(25), 257201 (2010)

    Article  ADS  Google Scholar 

  36. Hilczer, A., Pasinska, K.: Magnetic properties of Sr0.95Nd0.05Fe12-xScxO19 hexaferrite nanoparticles. J. Alloys Compd. 852, 156969 (2021)

    Article  Google Scholar 

  37. Sadykov, R.A., Aleshko-Ozhevskii, O.P., Artem’ev, N.A.: Sov. Phys. Solid State. 23, 1090 (1981)

    Google Scholar 

  38. Kreisel, J., Vincent, H., Tasset, F., Pate, M., Ganne, J.P.: An investigation of the magnetic anisotropy change in BaFe12−2xTixCoxO19 single crystals. J. Magn. Magn. Mater. 224(1), 17–29 (2001)

    Article  ADS  Google Scholar 

  39. Feng, M., Shao, B., Wu, J., Zuo, X.: Ab initio study on magnetic anisotropy change of SrCoxTixFe12− 2xO19. J. Appl. Phys. 113(17), 17D909 (2013)

    Article  Google Scholar 

  40. Mariño-Castellanos, P.A., Moreno-Borges, A.C., Orozco-Melgar, G., García, J.A., Govea-Alcaide, E.: Structural and magnetic study of the Ti4+-doped barium hexaferrite ceramic samples: theoretical and experimental results. Phys. B Condens. Matter. 406(17), 3130–3136 (2011)

    Article  ADS  Google Scholar 

  41. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. A32, 751 (1976)

    Article  ADS  Google Scholar 

  42. Gorbachev, E.A., Trusov, L.A., Sleptsova, A.E., Kozlyakova, E.S., Alyabyeva, L.N., Yegiyan, S.R., et al.: Hexaferrite materials displaying ultra-high coercivity and sub-terahertz ferromagnetic resonance frequencies. Mater. Today. 32, 13–18 (2020)

    Article  Google Scholar 

  43. Gordani, G.R., Ghasemi, A., Saidi, A.: Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram. Int. 40(3), 4945–4952 (2014)

    Article  Google Scholar 

  44. Kanagesan, S., Jesurani, S., Velmurugan, R., Prabu, S., Kalaivani, T.: Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexaferrite. Mater. Res. Bull. 47(2), 188–192 (2012)

    Article  Google Scholar 

  45. Smit, J., Wijn, H.P.J.: Ferrites, Philips technical library. Eindhoven, The Netherlands. 278, (1959)

  46. Fuchikami, N.: Magnetic anisotropy of magnetoplumbite BaFe12O19. J. Phys. Soc. Jpn. 20(5), 760–769 (1965)

    Article  ADS  Google Scholar 

  47. Xu, Y., Yang, G.L., Chu, D.P., Zhai, H.R.: Theory of the single ion magnetocrystalline anisotropy of 3d ions. Physica Status Solidi (b). 157(2), 685–693 (1990)

    Article  ADS  Google Scholar 

  48. Tseng, Y.C., Souza-Neto, N.M., Haskel, D., Gich, M., Frontera, C., Roig, A., et al.: Nonzero orbital moment in high coercivity ϵ-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B. 79(9), 094404 (2009)

    Article  ADS  Google Scholar 

  49. García, L.M., Chaboy, J., Bartolomé, F., Goedkoop, J.B.: Orbital magnetic moment instability at the spin reorientation transition of Nd2Fe14B. Phys. Rev. Lett. 85(2), 429 (2000)

    Article  ADS  Google Scholar 

  50. Burns, G.: Solid State Physics. Academic Press Inc, New York (1985)

    Google Scholar 

  51. Chikazumi, S. (1997). Physics of ferromagnetism (Second edit).

    Google Scholar 

  52. Yang, Z., Wang, C.S., Li, X.H., Zeng, H.X.: (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B. 90(1-2), 142–145 (2002)

    Article  Google Scholar 

  53. Sakuma, A.: First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn. 63, 3053 (1994)

    Article  ADS  Google Scholar 

  54. Staunton, J.B., Ostanin, S., Razee, S.S.A., Gyorffy, B., Szunyogh, L., Ginatempo, B., Bruno, E.: Long-range chemical order effects upon the magnetic anisotropy of FePt alloys from an ab initio electronic structure theory. J. Phys. Condens. Matter. 16, S5623 (2004)

    Article  ADS  Google Scholar 

  55. Sláma, J., Ušáková, M., Šoka, M., Dosoudil, R., Jancárik, V.: Hopkinson effect in soft and hard magnetic ferrites. Acta Phys. Pol. A. 131(4), 762–764 (2017)

    Article  ADS  Google Scholar 

  56. Slama, J., Soka, M., Gruskova, A., Gonzales, A., Jancarik, V.: Hopkinson effect study in spinel and hexagonal ferrites. J. Electr. Eng. 62(4), 239–243 (2011)

    Google Scholar 

  57. Evans, B.J., Grandjean, F., Lilot, A.P., Vogel, R.H., Gerard, A.: 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M= Sr, Ba). J. Magn. Magn. Mater. 67(1), 123–129 (1987)

    Article  ADS  Google Scholar 

  58. Wartewig, P., Krause, M.K., Esquinazi, P., Rösler, S., Sonntag, R.: Magnetic properties of Zn-and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192(1), 83–99 (1999)

    Article  ADS  Google Scholar 

  59. Obradors, X., Solans, X., Collomb, A., Samaras, D., Rodriguez, J., Pernet, M., Font-Altaba, M.: Crystal structure of strontium hexaferrite SrFe12O19. J. Solid State Chem. 72(2), 218–224 (1988)

    Article  ADS  Google Scholar 

  60. Kaur, B., Bhat, M., Licci, F., Kumar, R., Kulkarni, S.D., Joy, P.A., et al.: Modifications in magnetic anisotropy of M—type strontium hexaferrite crystals by swift heavy ion irradiation. J. Magn. Magn. Mater. 305(2), 392–402 (2006)

    Article  ADS  Google Scholar 

  61. Gonzalez-Angeles, A., Mendoza-Suarez, G., Gruskova, A., Papanova, M., Slama, J.: Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling. Mater. Lett. 59(1), 26–31 (2005)

    Article  Google Scholar 

  62. Kim, C.S., Kim, B., Yoon, S.: Effects of In3+ site occupancy on the magnetic properties of M-type strontium hexaferrites. AIP Adv. 10(1), 015040 (2020)

    Article  ADS  Google Scholar 

  63. Sadoc, A., Broer, R., de Graaf, C.: CASSCF study of the relation between the Fe charge and the Mossbauer isomer shift. Chem. Phys. Lett. 126(4-6), 196 (2008)

    Article  ADS  Google Scholar 

  64. Rensen, J.G., Schulkes, J.A., van Wieringen, J.S.: Mössbauer analysis and cation distribution of Zn substituted BaFe12O19 hexaferrites. J. Phys. Colln C. 1(32), 924–925 (1971)

    Google Scholar 

  65. Sauer, C., Köbler, U., Zinn, W., Stäblein, H.: High field Mössbauer effect study of LaFe12O19. J. Phys. Chem. Solids. 39(11), 1197–1201 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mishra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, S.C., Guragain, D., Mohapatra, J. et al. Magnetic and Mössbauer Effect Study of Ca-Sc Co-doped M-Type Strontium Hexaferrite. J Supercond Nov Magn 34, 2551–2564 (2021). https://doi.org/10.1007/s10948-021-05882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05882-2

Keywords

Navigation