Skip to main content
Log in

Structural and Magnetic Properties of Mn2Ge: a First Principle Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have investigated the structural and magnetic properties of Mn2Ge, using the projector augmented wave (PAW) method within the generalized gradient approximation (GGA). We have observed that the crystal symmetry for Mn2Ge is more likely to be tetragonal like Cu2Sb, rather than the hexagonal symmetry of Ni2In. Different magnetic ordering is assumed for Mn2Ge, based on that the electronic structure calculations are performed for Mn2Ge with antiferromagnetic (AFM), ferrimagnetic (FIM) spin ordering. In the most favorable ground state of Mn2Ge, nearest Mn (I) and Mn (II) are coupled ferromagnetically. The magnetic moments on the Mn(I) and Mn(II) are found to be varying based on their magnetic ordering. When ordering is ferromagnetic between Mn(I) and Mn(II), the magnetic moment on Mn(I) is large and in all other cases Mn(II) has larger magnetic moment. Easy flipping of spins has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwarz, K.: . J. Phys. F Metal Phys. 16(9), L211 (1986). https://doi.org/10.1088/0305-4608/16/9/002

    Article  ADS  Google Scholar 

  2. Roldan, A., Carballal, D.S., de Leeuw, N.H.: . J. Chem. Phys. 138(20), 204712 (2013). https://doi.org/10.1063/1.4807614

    Article  ADS  Google Scholar 

  3. Berri, S.: . J. Magn. Magn. Mater. 385, 124 (2015). https://doi.org/10.1016/j.jmmm.2015.03.025

    Article  ADS  Google Scholar 

  4. Hoat, D., Naseri, M., Physica, B: . Condens. Matter 583, 412058 (2020). https://doi.org/10.1016/j.physb.2020.412058

    Google Scholar 

  5. Hoat, D.: . Chem. Phys. 523, 130 (2019). https://doi.org/10.1016/j.chemphys.2019.04.009

    Article  Google Scholar 

  6. Luo, H.Z., Zhang, H.W., Zhu, Z.Y., Ma, L., Xu, S.F., Wu, G.H., Zhu, X.X., Jiang, C.B., Xu, H.B.: . J. Appl. Phys. 103(8), 083908 (2008). https://doi.org/10.1063/1.2903057

    Article  ADS  Google Scholar 

  7. Song, J.T., Zhang, J.M.: . Mater. Res. Express 4(11), 116501 (2017). https://doi.org/10.1088/2053-1591/aa93cc

    Article  ADS  Google Scholar 

  8. Song, J. T., Zhang, J. M.: . J. Magn. Magn. Mater. 460, 461 (2018). https://doi.org/10.1016/j.jmmm.2018.04.027

    Article  ADS  Google Scholar 

  9. Luo, H., Meng, F., Liu, H., Li, J., Liu, E., Wu, G., Zhu, X., Jiang, C.: . J. Magn. Magn. Mater. 324(13), 2127 (2012). https://doi.org/10.1016/j.jmmm.2012.02.026

    Article  ADS  Google Scholar 

  10. Austin, A., Adelson, E., Cloud, W.: .. In: Proceedings of the Seventh Conference on Magnetism and Magnetic Materials. https://doi.org/10.1007/978-1-4899-6391-8-141 (1962)

  11. Suzuki, M., Shirai, M., Motizuki, K.: . J. Phys. Condens. Matter 4(1), L33 (1992). https://doi.org/10.1088/0953-8984/4/1/008

    Article  ADS  Google Scholar 

  12. Motizuki, K., Suzuki, M., Shirai, M.: . Jpn. J. Appl. Phys. 32(S3), 221 (1993). https://doi.org/10.7567/jjaps.32s3.221

    Article  ADS  Google Scholar 

  13. Ellner, V. M.: . J. Appl.Cryst 13, 99 (1980)

    Article  Google Scholar 

  14. Arras, E., Caliste, D., Deutsch, T., Frédéric, L., Pochet, P.: . Phys. Rev. B 83, 174103 (2011). https://doi.org/10.1103/PhysRevB.83.174103

    Article  ADS  Google Scholar 

  15. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: . Phys. Rev. B 71(3), 035109 (2005). https://doi.org/10.1103/PhysRevB.71.035109

    Article  ADS  Google Scholar 

  16. Pearson, W. B.: . Zeitschrift fur Kristallographie 171, 23 (1985)

    ADS  Google Scholar 

  17. Laves, F., Wallbaum, H.J.: . Zeitschrift fuer Angewandte Mineralogie 4, 17 (1942)

    Google Scholar 

  18. Bahn, S. R., Jacobsen, K. W.: . Comput. Sci. Eng. 4(3), 56 (2002). https://doi.org/10.1109/5992.998641

    Article  Google Scholar 

  19. Yang, Z., Zhang, K., Xie, X.: . Phys. Rev. B 58, 339 (1998). https://doi.org/10.1103/PhysRevB.58.339

    Article  ADS  Google Scholar 

  20. Rahman, G.: . J. Magn. Magn. Mater. 321(18), 2775 (2009). https://doi.org/10.1016/j.jmmm.2009.04.003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SPR and KUMK appreciates the kind cooperation and encouragement from DEAN, SAS and HOD, Dept of Physics. We extend our sincere thanks to Mohan Kumar C M (Assistant Director-Systems) for providing us with computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Mahendra Kumar Koppolu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasabai, S.P., Koppolu, U.M.K. Structural and Magnetic Properties of Mn2Ge: a First Principle Study. J Supercond Nov Magn 34, 1539–1543 (2021). https://doi.org/10.1007/s10948-021-05871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05871-5

Keywords

Navigation