Skip to main content
Log in

Machine Learning Model for High-Throughput Screening of Perovskite Manganites with the Highest Néel Temperature

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Néel temperature (TN), the antiferromagnetic to paramagnetic phase transition temperature, is also one of the important magnetic properties of antiferromagnets. Antiferromagnets could be used to write and read information below TN in electronic memory devices. Perovskite manganites are an important antiferromagnetic material with superior magnetic properties. However, it is challengeable to seek novel perovskite manganites with TN higher than room temperature by trial-and-error method. In this work, the maximum correlation minimum redundancy (mRMR) integrated machine learning approaches were used to screen the optimal subset of features, which included chemical compositions and atomic parameters of perovskite manganites. The machine learning model called support vector regression (SVR) was constructed to predict the TN of perovskite manganites. The correlation coefficient (R) between experimental TN and predicted TN reached as high as 0.87 for the training set in leave-one-out cross-validation (LOOCV) and 0.86 for the independent testing set, respectively. The high-throughput screening of new perovskites with higher TN temperature was then carried out by using our online computation platform for materials data mining (OCPMDM). The TN of designed perovskite manganites (Sr0.7Pm0.3MnO3) was predicted to be 307.5K, increasing by 6% compared to the maximum TN of Sr0.9Ce0.1MnO3 (290K) reported. Our machine learning model can be accessible for public on web server: http://materials-data-mining.com/lkl/lkl_model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zelezny, J., Wadley, P., Olejnik, K., Hoffmann, A., Ohno, H.: Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14(3), 220–228 (2018). https://doi.org/10.1038/s41567-018-0062-7

    Article  Google Scholar 

  2. Morales, R., Kovylina, M., Schuller, I.K., Labarta, A., Batlle, X.: Antiferromagnetic/ferromagnetic nanostructures for multidigit storage units. Appl. Phys. Lett. 104(3), 032401 (2014)

    Article  ADS  Google Scholar 

  3. Rosić, M., Logar, M., Devečerski, A., Prekajski, M., Radosavljević-Mihajlović, A., Kusigerski, V., Spasojević, V., Matović, B.: Synthesis, structural and magnetic properties of nanostructured Ca0.9Gd0.1MnO3 obtained by modified glycine nitrate procedure (MGNP). Ceram. Int. 37(4), 1313–1319 (2011). https://doi.org/10.1016/j.ceramint.2010.12.015

    Article  Google Scholar 

  4. Goto, T., Kimura, T., Lawes, G., Ramirez, A.P., Tokura, Y.: Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92(25), 4 (2004). https://doi.org/10.1103/PhysRevLett.92.257201

    Article  Google Scholar 

  5. Dabrowski, B., Chmaissem, O., Mais, J., Kolesnik, S., Jorgensen, J.D., Short, S.: Tolerance factor rules for Sr1-x-yCaxBa(y)MnO(3) perovskites. J. Solid State Chem. 170(1), 154–164 (2003). https://doi.org/10.1016/s0022-4596(02)00056-7

    Article  ADS  Google Scholar 

  6. Bodnar, S.Y., Šmejkal, L., Turek, I., Jungwirth, T., Gomonay, O., Sinova, J., Sapozhnik, A., Elmers, H.-J., Kläui, M., Jourdan, M.: Writing and reading antiferromagnetic Mn 2 Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9(1), 1–7 (2018)

    Article  Google Scholar 

  7. Wu, H., Zhu, K., Xu, G., Wang, H.: Magnetic inhomogeneities in electron-doped manganites Sr1-xCexMnO3 (0.10 <= x <= 0.30). Phys. B-Condens. Matter. 407(4), 770–773 (2012). https://doi.org/10.1016/j.physb.2011.12.022

    Article  ADS  Google Scholar 

  8. Zhou, Y., Zheng, S., Zhang, G.: Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations-study of modelling and application in five climatic regions. Energy. 192, (2020). https://doi.org/10.1016/j.energy.2019.116608

  9. Song, Y., Lindsay, J., Zhao, Y., Nasiri, A., Louis, S.-Y., Ling, J., Hu, M., Hu, J.: Machine Learning based prediction of noncentrosymmetric crystal materials. Comput. Mater. Sci. 183, 109792 (2020). https://doi.org/10.1016/j.commatsci.2020.109792

    Article  Google Scholar 

  10. Chen, Y., Tian, Y., Zhou, Y., Fang, D., Ding, X., Sun, J., Xue, D.: Machine learning assisted multi-objective optimization for materials processing parameters: a case study in Mg alloy. J. Alloys Compd. 844, 156159 (2020). https://doi.org/10.1016/j.jallcom.2020.156159

    Article  Google Scholar 

  11. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning for molecular and materials science. Nature. 559(7715), 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2

    Article  ADS  Google Scholar 

  12. Xue, D., Balachandran, P.V., Hogden, J., Theiler, J., Xue, D., Lookman, T.: Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7 (2016). https://doi.org/10.1038/ncomms11241

  13. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C.: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom. 65(11), 1501–1509 (2013). https://doi.org/10.1007/s11837-013-0755-4

    Article  Google Scholar 

  14. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., Ramprasad, R.: Accelerating materials property predictions using machine learning. Sci. Rep. 3 (2013). https://doi.org/10.1038/srep02810

  15. Nelson, J., Sanvito, S.: Predicting the Curie temperature of ferromagnets using machine learning. Phys. Rev. Mater. 3(10), 104405 (2019). https://doi.org/10.1103/PhysRevMaterials.3.104405

    Article  Google Scholar 

  16. Court, C.J., Cole, J.M.: Auto-generated materials database of Curie and Néel temperatures via semi-supervised relationship extraction. Sci. Data. 5(1), 180111 (2018). https://doi.org/10.1038/sdata.2018.111

    Article  Google Scholar 

  17. Shi, L., Chang, D.P., Ji, X.B., Lu, W.C.: Using data mining to search for perovskite materials with higher specific surface area. J. Chem. Inf. Model. 58(12), 2420–2427 (2018). https://doi.org/10.1021/acs.jcim.8b00436

    Article  Google Scholar 

  18. Jiang Xiaowei, Yin Wanjian: Designing solar-cell absorber materials through computational high-throughput screening. Chin. Phys. B 29(2) (2020).

  19. Lu, S.H., Zhou, Q.H., Ouyang, Y.X., Guo, Y.L., Li, Q., Wang, J.L.: Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9, 8 (2018). https://doi.org/10.1038/s41467-018-05761-w

    Article  ADS  Google Scholar 

  20. Zhang, Y., Xu, X.: Machine learning F-doped Bi(Pb)–Sr–Ca–Cu–O superconducting transition temperature. J. Supercond. Nov. Magn. 34, 63 (2020). https://doi.org/10.1007/s10948-020-05682-0

    Article  Google Scholar 

  21. Zhang, Y., Xu, X.: Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A. 126(5), 341 (2020). https://doi.org/10.1007/s00339-020-03503-8

    Article  ADS  Google Scholar 

  22. Zhang, Y., Xu, X.: Yttrium barium copper oxide superconducting transition temperature modeling through gaussian process regression. Comput. Mater. Sci. 179, 109583 (2020). https://doi.org/10.1016/j.commatsci.2020.109583

    Article  Google Scholar 

  23. Zhang, Y., Xu, X.: Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn. Mater. 512, 166998 (2020). https://doi.org/10.1016/j.jmmm.2020.166998

    Article  Google Scholar 

  24. Zhai, X.Y., Chen, M.T., Lu, W.C.: Accelerated search for perovskite materials with higher Curie temperature based on the machine learning methods. Comput. Mater. Sci. 151, 41–48 (2018). https://doi.org/10.1016/j.commatsci.2018.04.031

    Article  Google Scholar 

  25. Balachandran, P.V., Kowalski, B., Sehirlioglu, A., Lookman, T.: Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nat. Commun. 9 (2018). https://doi.org/10.1038/s41467-018-03821-9

  26. Naumov, S.V., Loshkareva, N.N., Mostovshchikova, E.V., Solin, N.I., Korolev, A.V., Arbuzova, T.I., Telegin, S.V., Patrakov, E.I.: Magnetic, transport, and optical properties of Ca0.85Eu0.15MnO3 single crystal. Phys. B Condens. Matter. 408, 183–187 (2013). https://doi.org/10.1016/j.physb.2012.08.043

    Article  ADS  Google Scholar 

  27. Maheswar Repaka, D.V., Mahendiran, R.: Giant magnetothermopower in charge ordered Nd0.75Na0.25MnO3. Appl. Phys. Lett. 103(16), 162408 (2013). https://doi.org/10.1063/1.4826089

    Article  ADS  Google Scholar 

  28. Karmakar, A., Majumdar, S., Kundu, S., Nath, T.K., Giri, S.: A Griffiths-like phase in antiferromagnetic R0.5Eu0.5MnO3(R = Pr, Nd, Sm). J. Phys. Condens. Matter. 25(6), 066006 (2013). https://doi.org/10.1088/0953-8984/25/6/066006

    Article  ADS  Google Scholar 

  29. Wang, L.J., Chai, Y.S., Feng, S.M., Zhu, J.L., Manivannan, N., Jin, C.Q., Gong, Z.Z., Wang, X.H., Li, L.T.: Large magneto (thermo) dielectric effect in multiferroic orthorhombic LuMnO3. J. Appl. Phys. 111(11), 114103 (2012). https://doi.org/10.1063/1.4722299

    Article  ADS  Google Scholar 

  30. Li, R., Pi, L., Zhang, Y.: Ba2+ doping effect on the charge ordering of Bi0.5Sr0.5−xBaxMnO3 (x=0–0.30). Solid State Commun. 152(7), 616–620 (2012). https://doi.org/10.1016/j.ssc.2012.01.014

    Article  ADS  Google Scholar 

  31. Karmakar, A., Majumdar, S., Kundu, S., Nath, T.K., Giri, S.: Observation of Griffiths phase in antiferromagnetic La0.32Eu0.68MnO3. J. Phys. Condens. Matter. 24(12), 126003 (2012). https://doi.org/10.1088/0953-8984/24/12/126003

    Article  ADS  Google Scholar 

  32. Krishnamoorthi, C., Barik, S.K., Mahendiran, R.: Effect of Ru-substitution on electrical and magnetocaloric properties of Nd0.5Ca0.5MnO3. Solid State Commun. 151(2), 107–111 (2011). https://doi.org/10.1016/j.ssc.2010.11.015

    Article  ADS  Google Scholar 

  33. Hsu, H.C., Yang, C.D., Tseng, W.Y., Ku, H.C., Hsu, Y.Y.: Magnetic and dielectric properties of multiferroic Tb0.5Eu0.5MnO3. J. Phys. Conf. Ser. 273, 012114 (2011). https://doi.org/10.1088/1742-6596/273/1/012114

    Article  Google Scholar 

  34. Wang, Y., Sui, Y., Wang, X., Su, W.: Structure, transport and magnetic properties of electron-doped perovskites RxCa1−xMnO3(R = La, Y and Ce). J. Phys. Condens. Matter. 21(19), 196004 (2009). https://doi.org/10.1088/0953-8984/21/19/196004

    Article  ADS  Google Scholar 

  35. Taguchi, H., Hirata, K., Kato, M., Hirota, K.: Behavior of Mn3+ ions in four-layered hexagonal (Sr1−x−yLaxBay)MnO3. Solid State Sci. 11(2), 491–495 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.001

    Article  ADS  Google Scholar 

  36. Kallel, N., Kallel, S., Peña, O., Oumezzine, M.: Structural and magnetic properties of hole-doped(La0.56Ce0.14)Sr0.30MnO3 perovskite. Solid State Sci. 11(8), 1494–1498 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.05.013

    Article  ADS  Google Scholar 

  37. Jandl, S., Mukhin, A.A., Yu Ivanov, V., Balbashov, A., Orlita, M.: Nd3+ crystal-field study of weakly doped Nd1−xCaxMnO3. J. Magn. Magn. Mater. 321(21), 3607–3610 (2009). https://doi.org/10.1016/j.jmmm.2009.06.078

    Article  ADS  Google Scholar 

  38. Fertman, E., Beznosov, A., Sheptyakov, D., Desnenko, V., Kajnakova, M., Feher, A., Khalyavin, D.: Effect of Y-doping on the magnetic and charge orderings in Nd2/3Ca1/3MnO3. J. Magn. Magn. Mater. 321(4), 316–320 (2009). https://doi.org/10.1016/j.jmmm.2008.09.006

    Article  ADS  Google Scholar 

  39. Xu, J., Park, J.H., Jang, H.M.: Orbital-spin-phonon coupling in Jahn-Teller-distorted LaMnO3: softening of the 490 and 610 cm-1 Raman-active modes. Phys. Rev. B. 75(1), 012409 (2007). https://doi.org/10.1103/PhysRevB.75.012409

    Article  ADS  Google Scholar 

  40. Li, Y., Miao, J., Sui, Y., Wang, X., Zhang, W., Liu, Y., Zhu, R., Su, W.: Synthesis, structural and transport properties of Pr0.75Na0.25Mn1−xFexO3 (0.0≤x≤0.3). J. Alloys Compd. 441(1), 1–5 (2007). https://doi.org/10.1016/j.jallcom.2006.09.070

    Article  Google Scholar 

  41. Sedmidubský, D., Strejc, A., Beneš, O., Ružička, K., Hejtmánek, J., Javorský, P., Nevřiva, M., Martin, C.: Energetics of charge order transition in Bi1-xSrxMnO3. J. Solid State Chem. 179(12), 3798–3804 (2006). https://doi.org/10.1016/j.jssc.2006.08.021

    Article  ADS  Google Scholar 

  42. Yoshii, K., Abe, H., Ikeda, N.: Structure, magnetism and transport of the perovskite manganites Ln0.5Ca0.5MnO3 (Ln=Ho, Er, Tm, Yb and Lu). J. Solid State Chem. 178(12), 3615–3623 (2005). https://doi.org/10.1016/j.jssc.2005.08.033

    Article  ADS  Google Scholar 

  43. Wang, Y., Lu, X., Chen, Y., Chi, F., Feng, S., Liu, X.: Hydrothermal synthesis of two perovskite rare-earth manganites, HoMnO3 and DyMnO3. J. Solid State Chem. 178(4), 1317–1320 (2005). https://doi.org/10.1016/j.jssc.2004.12.039

    Article  ADS  Google Scholar 

  44. Seikh, M.M., Sudheendra, L., Rao, C.N.R.: Magnetic properties of La0.5−xLnxSr0.5MnO3 (Ln=Pr, Nd, Gd and Y). J. Solid State Chem. 177(10), 3633–3639 (2004). https://doi.org/10.1016/j.jssc.2004.06.004

    Article  ADS  Google Scholar 

  45. Asthana, S., Bahadur, D., Nigam, A.K., Malik, S.K.: Magneto-transport studies on (Pr1/3Sm2/3)2/3A1/3MnO3(A = Ca, Sr and Ba) compounds. J. Phys. Condens. Matter. 16(29), 5297–5307 (2004). https://doi.org/10.1088/0953-8984/16/29/020

    Article  ADS  Google Scholar 

  46. Rajendran, V., Kumaran, S.M., Sivasubramanian, V., Jayakumar, T., Raj, B.: Anomalies in ultrasonic velocity and attenuation in Nd0.67Sr0.33MnO3 perovskite. Phys. B Condens. Matter. 336(3), 261–266 (2003). https://doi.org/10.1016/S0921-4526(03)00256-4

    Article  ADS  Google Scholar 

  47. Autret, C., Martin, C., Maignan, A., Hervieu, M., Raveau, B., André, G., Bourée, F.: Strained structure in Ho0.5Sr0.5MnO3. J. Solid State Chem. 165(1), 65–73 (2002). https://doi.org/10.1006/jssc.2001.9494

    Article  ADS  Google Scholar 

  48. Martin, C., Maignan, A., Hervieu, M., Raveau, B., Jirák, Z., Savosta, M.M., Kurbakov, A., Trounov, V., André, G., Bourée, F.: Structural study of the electron-doped manganites Sm0.1Ca0.9MnO3 and Pr0.1Sr0.9MnO3: evidence of phase separation. Phys. Rev. B. 62(10), 6442–6449 (2000). https://doi.org/10.1103/PhysRevB.62.6442

    Article  ADS  Google Scholar 

  49. Rivadulla, F., López-Quintela, M.A., Hueso, L.E., Jardón, C., Fondado, A., Rivas, J., Causa, M.T., Sánchez, R.D.: Strong ferro–antiferromagnetic competition and charge ordering in Pr0.67Ca0.33MnO3. Solid State Commun. 110(3), 179–183 (1999). https://doi.org/10.1016/S0038-1098(99)00063-0

    Article  ADS  Google Scholar 

  50. Martin, C., Maignan, A., Hervieu, M., Raveau, B., Jirák, Z., Kurbakov, A., Trounov, V., André, G., Bourée, F.: Two C-type antiferromagnets with different magnetoresistive properties: Sm0.15Ca0.85MnO3 and Pr0.15Sr0.85MnO3. J. Magn. Magn. Mater. 205(2), 184–198 (1999). https://doi.org/10.1016/S0304-8853(99)00493-X

    Article  ADS  Google Scholar 

  51. Damay, F., Martin, C., Maignan, A., Hervieu, M., Raveau, B., Jirak, Z., André, G., Bourée, F.: Magnetic and structural transitions in the half-doped manganites Pr0.5Sr0.5-xCaxMnO3. Chem. Mater. 11(3), 536–541 (1999). https://doi.org/10.1021/cm981054z

    Article  Google Scholar 

  52. Tadokoro, Y., Shan, Y.J., Nakamura, T., Nakamura, S.: Crystal structure and characterizations of perovskite oxides (Eu1−xSrx)MnO3 (0.0≤x≤0.5). Solid State Ionics. 108(1), 261–267 (1998). https://doi.org/10.1016/S0167-2738(98)00048-4

    Article  Google Scholar 

  53. Zarifi, M., Kameli, P., Raoufi, T., Ghotbi Varzaneh, A., Salazar, D., Nouraddini, M.I., Kotsedi, L., Maaza, M.: Direct and indirect measurement of the magnetocaloric effect in the La0.5Ca0.5−xPbxMnO3 (0≤x≤0.2) manganites. J. Magn. Magn. Mater. 494, 165734 (2020). https://doi.org/10.1016/j.jmmm.2019.165734

    Article  Google Scholar 

  54. Villars, P., Brandenburg, K., Berndt, M., LeClair, S., Jackson, A., Pao, Y.H., Igelnik, B., Oxley, M., Bakshi, B., Chen, P., Iwata, S.: Interplay of large materials databases, semi-empirical methods, neuro-computing and first principle calculations for ternary compound former/nonformer prediction. Eng. Appl. Artif. Intell. 13(5), 497–505 (2000). https://doi.org/10.1016/S0952-1976(00)00028-2

    Article  Google Scholar 

  55. Zhang, Q., Chang, D.P., Zhai, X.Y., Lu, W.C.: OCPMDM: Online computation platform for materials data mining. Chemom. Intell. Lab. Syst. 177, 26–34 (2018). https://doi.org/10.1016/j.chemolab.2018.04.004

    Article  Google Scholar 

  56. Wold, S., Sjostrom, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58(2), 109–130 (2001). https://doi.org/10.1016/s0169-7439(01)00155-1

    Article  Google Scholar 

  57. Jain, A.K., Mao, J.C., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer. 29(3), 31–44 (1996). https://doi.org/10.1109/2.485891

    Article  Google Scholar 

  58. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  59. Zhang, Y., Xu, X.: Machine learning lattice constants for spinel compounds. Chem. Phys. Lett. 760, 137993 (2020)

    Article  Google Scholar 

  60. Zhang, Y., Xu, X.: Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids. New J. Chem. 44(47), 20544–20567 (2020). https://doi.org/10.1039/d0nj03868g

    Article  Google Scholar 

  61. Zhang, Y., Xu, X.: Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys. Lett. A. 384(20), 126500 (2020). https://doi.org/10.1016/j.physleta.2020.126500

    Article  Google Scholar 

  62. Zhang, Y., Xu, X.: Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 10(35), 20646–20653 (2020). https://doi.org/10.1039/d0ra03031g

    Article  ADS  Google Scholar 

  63. Zhang, Y., Xu, X.: Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds. CrystEngComm. 22(38), 6385–6397 (2020). https://doi.org/10.1039/d0ce00928h

    Article  Google Scholar 

  64. Feng, J., Lu, W., Bao, X.: Optimal map recognition applied to molecular sieving of guanidines as Na/H exchange inhibitory activity. Chin. J. Med. Chem. 04, 3–5 (1999)

    Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (No. 2018YFB0704400) and the Science and Technology Commission of Shanghai Municipality (18520723500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencong Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 11 kb)

ESM 2

(XLSX 14 kb)

ESM 3

(XLSX 14 kb)

ESM 4

(XLSX 11 kb)

ESM 5

(PDF 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Chang, D., Lu, T. et al. Machine Learning Model for High-Throughput Screening of Perovskite Manganites with the Highest Néel Temperature. J Supercond Nov Magn 34, 1961–1969 (2021). https://doi.org/10.1007/s10948-021-05857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05857-3

Keywords

Navigation