Skip to main content
Log in

Tailoring the Structural and Electrical Properties of Ba–Zn–Co M-Type Hexaferrites by Lanthanum Substitution for High-Resistivity Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, Ba0.5Zn0.2Co0.3Fe12-yLayO19 (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) nano-hexaferrites were prepared through the co-precipitation route. The synthesized powder was sintered at 1100 °C for 6 h to assist the crystallization process. The formation of single-phase hexagonal structure was confirmed by XRD. The size of prepared crystals of nano-hexaferrites was estimated in the range of 12.5–28.1 nm. The FTIR spectra also confirmed the formation of M-type hexagonal phase with the characteristic band of hexagonal structure observed at about 560 cm−1. The current voltage measurements were performed to study the electrical nature of prepared samples in the temperature range 300–900 K. At room temperature, the highest values 2 × 1011 Ω cm and 0.5 eV of electrical resistivity and activation energy, respectively, are found for the sample with La concentration y = 0.2. The enhanced dc electrical resistivity due to La substitution shows that the synthesized hexaferrites are efficient to reduce the eddy current losses for device fabrication in the high-frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Topkaya, R., et al.: Effect of temperature on magnetic properties of BaYxFe12−xO19 hexaferrites. Ceram. Int. 42, 16296–16302 (2016)

    Article  Google Scholar 

  2. Rana, K., et al.: Influence of samarium doping on magnetic and structural properties of M type Ba–Co hexaferrite. Ceram. Int. 42, 8413–8418 (2016)

    Article  Google Scholar 

  3. Yasmin, N., et al.: Structural and dielectric properties of Gd-Zn substituted Ca0.5Ba0.5Fe12O19 M-type hexa-ferrites synthesized via auto-combustion method. J. Alloys Compd. 774, 962–968 (2019)

    Article  Google Scholar 

  4. Schmidt, T., et al.: Phase formation and saturation magnetization of La-Zn-substituted M-type strontium ferrites. J. Magn. Magn. Mater. 508, 166887 (2020)

    Article  Google Scholar 

  5. Goldman, A.: Modern ferrite technology. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  6. Mallick, K.K., et al.: Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. Magn. Magn. Mater. 312, 418–429 (2007)

    Article  ADS  Google Scholar 

  7. Wei, X., et al.: Crystal structure, morphology and magnetic properties of hexagonal M-type barium ferrite film based on the substrate temperature. Chem. Phys. Lett. 752, 137541 (2020)

    Article  Google Scholar 

  8. Bierlich, S., et al.: Sintering, microwave properties, and circulator applications of textured Sc-substituted M-type ferrite thick films. J.Eur. Ceram. Soc. 39, 3077–3081 (2019)

    Article  Google Scholar 

  9. Rana, K., et al.: Investigation of cobalt substituted M-type barium ferrite synthesized via co-precipitation method for radar absorbing material in Ku-band (12–18 GHz). Ceram. Int. 44, 6370–6375 (2018)

    Article  Google Scholar 

  10. Topfer, J., et al.: Hexagonal ferrites of X-, W-, and M-type in the system Sr–Fe–O: a comparative study. J. Solid State Chem. 226, 133–141 (2015)

    Article  ADS  Google Scholar 

  11. Vinaykumar, R., Bera, J.: Characterizations of low-temperature sintered BaCo1.3Ti1.3Fe9.4O19 M-type ferrite for high-frequency antenna application. J. Magn. Magn. Mater. 451, 614–619 (2018)

    Article  ADS  Google Scholar 

  12. Satyapal, H.K., et al.: Low temperature synthesis and influence of rare earth Nd3+ substitution on the structural, magnetic behaviour of M-type barium hexa-ferrite nanomaterials. Mater. Today: Proc. 28, 234–240 (2020)

    Google Scholar 

  13. Harikrishnan, V., et al.: Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets. J. Magn. Magn. Mater. 448, 243–249 (2018)

    Article  ADS  Google Scholar 

  14. Yang, Y., et al.: Structural and magnetic properties of La–co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method. Mater. Res. Bull. 59, 37–41 (2014)

    Article  Google Scholar 

  15. Arora, A., Narang, S.B.: Investigation of microwave absorptive behavior of La-Na substituted M-type Co-Zr barium hexaferrites in X-band. J. Supercond. Nov. Magn. 29, 2881–2886 (2016)

    Article  Google Scholar 

  16. Singh, V.P., et al.: Structural, magnetic and Mössbauer study of BaLaxFe12−xO19 nanohexaferrites synthesized via sol–gel auto-combustion technique. Ceram. Int. 42, 5011–5017 (2016)

    Article  Google Scholar 

  17. Thakur, A., et al.: Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35–40 (2013)

    Article  ADS  Google Scholar 

  18. Ayub, M., et al.: Effect of rare earth and transition metal La-Mn substitution on electrical properties of co-precipitated M-type Ba-ferrites nanoparticles. J. Rare Earths. 37, 193–197 (2019)

    Article  Google Scholar 

  19. Arshad, M.I., et al.: Effects of Sr-substitution on the microstructure and magnetic behavior of M-type hexagonal ferrites synthesis by co-precipitation method. J. Ovon. Res. 13, 203–210 (2017)

    Google Scholar 

  20. Iqbal, M.J., Farooq, S.: Enhancement of electrical resistivity of Sr0.5Ba0.5Fe12O19 nanomaterials by doping with lanthanum and nickel. Mater. Chem. Phys. 118, 308–313 (2009)

    Article  Google Scholar 

  21. Yuping, L., et al.: Fabrication of M-type ferrites with high La-Co concentration through Ca2+ doping. J. Alloys Compd. 734, 130–135 (2018)

    Article  Google Scholar 

  22. Auwal, I.A., et al.: Magneto-optical properties of SrBixLaxFe12-2xO19 (0.0≤x≤0.5) hexaferrites by sol-gel auto-combustion technique. Ceram. Int. 43, 1298–1303 (2017)

    Article  Google Scholar 

  23. Xia, A., et al.: M-type SrFe12O19 ferrites obtained by using cubic or spindle-like α-Fe2O3 as Fe sources: a comparative study. J. Alloys Compd. 784, 276–281 (2019)

    Article  Google Scholar 

  24. Nethala, G.P., et al.: Investigations on the structural, magnetic and mossbauer properties of cerium doped strontium ferrite. Physica B. 550, 136–144 (2018)

    Article  ADS  Google Scholar 

  25. Ali, I., et al.: Study of electrical and dielectric behavior of Tb+3 substituted Y-type hexagonal ferrite. J. Alloys Compd. 617, 863–868 (2014)

    Article  Google Scholar 

  26. Sadiq, I., et al.: Influence of Sm-Mn substitution on structural, dielectric and electrical properties of X-type hexagonal nanoferrites. J. Chem. Soc. Pak. 37, 33–38 (2015)

    Google Scholar 

  27. Majeed, A., et al.: Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites. Physica B. 503, 38–43 (2016)

    Article  ADS  Google Scholar 

  28. Ramzan, M., et al.: Investigation of electrical and magnetic properties of La3+ substituted M-type Ba–Ni nano-ferrites. J. Supercond. Nov. Magn. 32, 3517–3524 (2019)

    Article  Google Scholar 

Download references

Funding

The Government College University, Faisalabad, Pakistan, provided the financial assistance for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ajaz-un-Nabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.I., Nadeem, S., Amin, N. et al. Tailoring the Structural and Electrical Properties of Ba–Zn–Co M-Type Hexaferrites by Lanthanum Substitution for High-Resistivity Applications. J Supercond Nov Magn 34, 1807–1811 (2021). https://doi.org/10.1007/s10948-020-05750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05750-5

Keywords

Navigation