Skip to main content
Log in

Structural, Electronic, Magnetic, Elastic, Thermodynamic, and Thermoelectric Properties of the Half-Heusler RhFeX (with X = Ge, Sn) Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present work, the structural, electronic, magnetic, elastic, thermodynamic, and thermoelectric properties of half-Heusler alloys RhFeX (with X = Ge, Sn) have been investigated using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) implemented in the WIEN2k code. The generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Tran-Blaha-modified Becke-Johnson exchange potential method (TB-mBJ) has been used for modeling exchange correlation potential. The results obtained show that the two studied compounds are mechanically and dynamically stable. On the other hand, both compounds RhFeX (with X = Ge, Sn) exhibit a half-metallic ferromagnet behavior; their magnetic moments obey the Slater-Pauling rule with an absolute bias of 100% around the Fermi level. The thermodynamic properties including the isothermal bulk modulus, the heat capacity, the Debye temperature, and the thermal expansion coefficients of both compounds are investigated using the quasi-harmonic Debye model. According to the thermoelectric results, the values of the merit factor (ZT) are 0.935 and 0.952 at 300 K for RhFeGe and RhFeSn, respectively; these results indicate that our compounds are potentially good candidates for thermoelectric applications at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024–2027 (1983)

    ADS  Google Scholar 

  2. Murnaghan, F.D.: Proc. Natl. Acad. Sci. U. S. A. 30, 244–247 (1947)

    ADS  Google Scholar 

  3. Xiong, L., Yi, L., Gao, G.Y.: J. Magn. Magn. Mater. 360, 98–103 (2014)

    ADS  Google Scholar 

  4. Hohenberg, P., Kohn, W.: Phys. Rev. 136, 864–871 (1964)

    ADS  MathSciNet  Google Scholar 

  5. Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133–1138 (1965)

    ADS  Google Scholar 

  6. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Phys. Rev. B 46, 6671–6687 (1992)

    ADS  Google Scholar 

  7. Slater, J.C.: Adv. Quantum Chem. 1, 55–64 (1964)

    ADS  MathSciNet  Google Scholar 

  8. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  9. Perdew, J.P., Wang, Y.: Phys. Rev. B45, 13 244–13 249 (1992)

    Google Scholar 

  10. Otero-de-la Roza, A., Luaña, V.: Comput. Phys. Commun. 180, 800–812 (2009)

    ADS  Google Scholar 

  11. Rogl, G., Grytsiv, A., Gürth, M., Tavassoli, A., Ebner, C., Wünschek, A., Puchegger, S., Soprunyuk, V., Schranz, W., Bauer, E., Müller, H., Zehetbauer, M., Rogl, P.: Acta Mater. 107, 178 (2016)

    ADS  Google Scholar 

  12. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J.: “WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties,” 2th Edition, Vienna University of Technology, Vienna (2001).

  13. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401–226404 (2009)

    ADS  Google Scholar 

  14. Blaha, P., Schwarz, K., Madsen, G.K.H., Hvasnicka, D., Luitz, J.: Wien2k: an Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Austria (2001)

    Google Scholar 

  15. Blanco, M.A., Francisco, E., Luaña, V.: Comput. Phys. Commun. 158, 57–72 (2004)

    ADS  Google Scholar 

  16. Songke, F., Shuangming, L., Hengzhi, F.: Comput. Mater. Sci. 82, 45 (2014)

    Google Scholar 

  17. Madsen, G.K., Singh, D.J., Boltztrap: Comput. Phys. Commun. 175(1), 67–71 (2006)

    ADS  Google Scholar 

  18. Bulusu, A., Walker, D.G.: Review of electronic transport models for thermoelectric materials. Superlattice. Microst. 44, 1–36 (2008)

    ADS  Google Scholar 

  19. Feng, L., Liu, E., Zhang, W., Wang, W., Wu, G.: First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ. J. Magn. Magn. Mater. 351, 92–97 (2014)

    ADS  Google Scholar 

  20. Webster, P.J., Ziebeck, K.R.A.: Landolt-Börnstein - group III condensed matter, vol. 19C, pp. 75–184. Springer, Berlin (1988)

    Google Scholar 

  21. Murnaghan, F.D.: Proc. Natl. Acad. Sci. 30, 244 (1944)

    ADS  Google Scholar 

  22. Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B. 95, 024411 (2017)

    ADS  Google Scholar 

  23. Johnson, K.A., Ashcroft, N.W.: Phys. Rev. B 58, 15548 (1998)

    ADS  Google Scholar 

  24. Kacimi, S., Mehnane, H., Zaoui, A.: J. Alloys Compd. 587, 451 (2014)

    Google Scholar 

  25. Yadav, M.K., Sanyal, B.: First principles study of thermoelectric properties of Li-based half-Heusler alloys. J. Alloys Compd. 622, 388–393 (2015)

    Google Scholar 

  26. Chibani, S., Arbouche, O., Zemouli, M., Amara, K., Benallou, Y., Azzaz, Y., Ameri, M.: J. Electron. Mater. 47(1), 196 (2017)

    ADS  Google Scholar 

  27. Haque, E., Hossain, M.A.: Results Phys. 10, 458 (2018)

    ADS  Google Scholar 

  28. Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Solid State Commun. 133, 301 (2005)

    ADS  Google Scholar 

  29. Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L., Jiang, J.L.: Phys. Rev. B 75, 174442 (2007)

    ADS  Google Scholar 

  30. Galanakis, T., Endo, K., Chieda, Y., Sugawara, T., Obara, K., Shishido, T., Matsubayashi, K.Y., Uwatoko, H., Nishihara, R., Umetsu, Y., Nagasako, M., Kainuma, R.: J. Alloys Compd. 505, 29 (2010)

    Google Scholar 

  31. Born, M., Huang, K.: Dynamical Theory and Experiment I, ed, pp. 1–415. Springer Verlag, Berlin (1982)

    Google Scholar 

  32. Wallace, D.C.: Thermodynamics of Crystals, ed, pp. 1–484. Dover Publications, INC, Wiley, Mileona (1972)

    Google Scholar 

  33. Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)

    Google Scholar 

  34. Hill, R.: Proc. Phys. Soc. Lond. A 65, 349 (1952)

    ADS  Google Scholar 

  35. Nye, J.F.: Physical Properties of Crystals. Clarendon, Oxford (1957)

    MATH  Google Scholar 

  36. Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: In: Frantsevich, I.N. (ed.) Naukova Dumka, Kiev, 1983Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, pp. 60–180. NaukovaDumka, Kiev (1982)

    Google Scholar 

  37. Haines, J., Leger, J.M., Bocquillon, G.: Annu. Rev. Mater. Sci. 31, 1 (2001)

    ADS  Google Scholar 

  38. E. Schreiber and O. L. Anderson, N. Soga, Elastic Constants and Their Measurements (book) 1973, pp 82–125

  39. Wachter, P., Filzmoser, M., Rebizant, J.: Phys. B Condens. Matter. B293,223 (2001)

  40. Otero-de-la-Roza, A., Abbasi-Pérez, D., Luana, V.: Comput. Phys.Commun. 182, 2232 (2011)

    ADS  Google Scholar 

  41. Petit, A.T., Dulong, P.L.: Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  42. Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, (2009)

  43. Chang, J., Chen, X.R., Zhang, W., Zhu, J.: Chin. Phys. B 17, 1377 (2008)

    Google Scholar 

  44. Tan, X.J., Liu, W., Liu, H.J., Shi, J., Tang, X.F., Uher, C.: Phys. Rev. B. 85, 205 (2012)

    Google Scholar 

  45. Pei, Y., Wang, H., Snyder, G.J.: Adv. Mater. 24, 6125 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Aziz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennani, M.A., Aziz, Z., Terkhi, S. et al. Structural, Electronic, Magnetic, Elastic, Thermodynamic, and Thermoelectric Properties of the Half-Heusler RhFeX (with X = Ge, Sn) Compounds. J Supercond Nov Magn 34, 211–225 (2021). https://doi.org/10.1007/s10948-020-05677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05677-x

Keywords

Navigation