Skip to main content
Log in

Theoretical Study of the Effect of Magnetic Field Sweep Rate and Temperature on Shielding Efficiency in a Bulk Tube-Shaped HTS

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we have studied the shielding properties of a high temperature superconducting (HTS) bulk tube-shaped cylinder in varying magnetic fields. Within this scope, we have simulated the hollow cylinder geometry in axis-symmetric finite element method (FEM) in which the electromagnetic properties of a HTS are described by a nonlinear electric field-current density (E − J) power law including a critical current density depending on magnetic field. In the first stage, we have analyzed temperature dependence of shielding factor (SF), which is described as the ratio of the applied magnetic field to the magnetic field in the center of the hollow cylinder. In the second stage, the effect of magnetic field’s sweep rate (dBapp/dt) on the magnetic shielding was numerically examined. In the final stage, using the certain lines over the superconducting tube, we have worked out the shielding field (Bsz) of the HTS tube by subtracting the z-component of magnetic field (Bz) from applied magnetic field (Bapp). Our numerical investigations indicate that the superconducting tube can provide field and temperature-controlled magnetic shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, B., Peng, Q.L., Yang, X.C., Li, S.P.: Current leads for superconducting magnets of ADS injector i. Chin. Phys. C. 38, 067004 (2014). https://doi.org/10.1088/1674-1137/38/6/067004

    Article  ADS  Google Scholar 

  2. Dommerque, R., Krämer, S., Hobl, A., Böhm, R., Bludau, M., Bock, J., Klaus, D., Piereder, H., Wilson, A., Krüger, T., Pfeiffer, G., Pfeiffer, K., Elschner, S.: First commercial medium voltage superconducting fault-current limiters: production, test and installation. Supercond. Sci. Technol. 23, 034020 (2010). https://doi.org/10.1088/0953-2048/23/3/034020

    Article  ADS  Google Scholar 

  3. Genenko, Y.A., Usoskin, A., Freyhardt, H.C.: Large predicted self-field critical current enhancements in superconducting strips using magnetic screens. Phys. Rev. Lett. 83, 3045–3048 (1999). https://doi.org/10.1103/PhysRevLett.83.3045

    Article  ADS  Google Scholar 

  4. Fagnard, J.F., Dirickx, M., Ausloos, M., Lousberg, G., Vanderheyden, B., Vanderbemden, P.: Magnetic shielding properties of high- Tc superconducting hollow cylinders: model combining experimental data for axial and transverse magnetic field configurations. Supercond. Sci. Technol. 22, 105002 (2009). https://doi.org/10.1088/0953-2048/22/10/105002

    Article  ADS  Google Scholar 

  5. Kok, J.G.M., Raaymakers, B.W., Lagendijk, J.J.W., Overweg, J., De Graaff, C.H.W., Brown, K.J.: Installation of the 1.5 T MRI accelerator next to clinical accelerators: Impact of the fringe field. Phys. Med. Biol. 54, N409–N415 (2009). https://doi.org/10.1088/0031-9155/54/18/N02

    Article  ADS  Google Scholar 

  6. Johnston, T., Moser, R., Moeller, K., Moriarty, T.M.: Intraoperative MRI: safety. Neurosurg. Clin. N. Am. 20, 147–153 (2009). https://doi.org/10.1016/j.nec.2009.04.007

    Article  Google Scholar 

  7. Fagaly, R.L.: Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum. 77, 101101 (2006). https://doi.org/10.1063/1.2354545

    Article  ADS  Google Scholar 

  8. Lousberg, G.P., Fagnard, J.F., Ausloos, M., Vanderbemden, P., Vanderheyden, B.: Numerical study of the shielding properties of macroscopic hybrid ferromagnetic/superconductor hollow cylinders. IEEE Trans. Appl. Supercond. 20, 33–41 (2010). https://doi.org/10.1109/TASC.2009.2036855

    Article  ADS  Google Scholar 

  9. Omura, A., Kotani, K., Yasu, K., Itoh, M.: Analysis of the magnetic distribution within a high-temperature superconductor magnetic shielding cylinder by use of the finite element method. J. Phys. Chem. Solids. 67, 43–46 (2006). https://doi.org/10.1016/j.jpcs.2005.10.023

    Article  ADS  Google Scholar 

  10. Fagnard, J.F., Denis, S., Lousberg, G., Dirickx, M., Ausloos, M., Vanderheyden, B., Vanderbemden, P.: DC and AC shielding properties of bulk high-tc. IEEE Trans. Appl. Supercond. 19, 2905–2908 (2009). https://doi.org/10.1109/TASC.2009.2017880

    Article  ADS  Google Scholar 

  11. Yildiz, S., Inanir, F., Cicek, A., Gomory, F.: Numerical study of AC loss of two-layer HTS power transmission cables composed of coated conductors with a ferromagnetic substrate. Turk. J. Electr. Eng. Comput. Sci. 25, 3528–3539 (2017). https://doi.org/10.3906/elk-1505-181

    Article  Google Scholar 

  12. Mori, K., Minemoto, T., Itoh, M.: Magnetic shielding of the superposition of a hybrid ferromagnetic cylinder over a BPSCCO cylinder. IEEE Trans. Appl. Supercond. 7, 378–381 (1997). https://doi.org/10.1109/77.614508

    Article  ADS  Google Scholar 

  13. Itoh, M.: Influence of wall thickness on magnetic shielding effects of BPSCCO cylinders. In: Advances in cryogenic engineering materials. pp. 261–270. Springer US, Boston, MA (1994)

  14. Itoh, M., Ohyama, T., Hoshino, K., Ishigaki, H., Minemoto, T.: Improvement in magnetic shielding by the superposition of a magnetic cylinder over a copper-oxide superconducting cylinder. IEEE Trans. Appl. Supercond. 3, 181–184 (1993). https://doi.org/10.1109/77.233700

    Article  ADS  Google Scholar 

  15. Ruiz-Alonso, D., Coombs, T.A., Campbell, A.M.: Numerical solutions to the critical state in a magnet-high temperature superconductor interaction. Supercond. Sci. Technol. 18, S209–S214 (2005). https://doi.org/10.1088/0953-2048/18/2/043

    Article  ADS  Google Scholar 

  16. Stavrev, S., Grilli, F., Dutoit, B., Nibbio, N., Vinot, E., Klutsch, I., Meunier, G., Tixador, P., Yang, Y., Martinez, E.: Comparison of numerical methods for modeling of superconductors. IEEE Trans. Magn. 38, 849–852 (2002). https://doi.org/10.1109/20.996219

    Article  ADS  Google Scholar 

  17. Brambilla, R., Grilli, F., Martini, L.: Development of an edge-element model for AC loss computation of high-temperature superconductors. Supercond. Sci. Technol. 20, 16–24 (2007). https://doi.org/10.1088/0953-2048/20/1/004

    Article  ADS  Google Scholar 

  18. Enomoto, N., Izumi, T., Amemiya, N.: Electromagnetic field analysis of rectangular superconductor with large aspect ratio in arbitrary orientated magnetic fields. IEEE Trans. Appl. Supercond. 15, 1574–1577 (2005). https://doi.org/10.1109/TASC.2005.849176

    Article  ADS  Google Scholar 

  19. Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19, 1246–1252 (2006). https://doi.org/10.1088/0953-2048/19/12/004

    Article  ADS  Google Scholar 

  20. Rhyner, J.: Magnetic properties and AC-losses of superconductors with power law current-voltage characteristics. Phys. C Supercond. Appl. 212, 292–300 (1993). https://doi.org/10.1016/0921-4534(93)90592-E

    Article  ADS  Google Scholar 

  21. Kajikawa, K., Hayashi, T., Yoshida, R., Iwakuma, M., Funaki, K.: Numerical evaluation of AC losses in HTS wires with 2D FEM formulated by self magnetic field. IEEE Trans. Appl. Supercond. 13, 3630–3633 (2003). https://doi.org/10.1109/TASC.2003.812415

    Article  ADS  Google Scholar 

  22. Kim, Y.B., Hempstead, C.F., Strnad, A.R.: Flux creep in hard superconductors. Phys. Rev. 131, 2486–2495 (1963). https://doi.org/10.1103/PhysRev.131.2486

    Article  ADS  Google Scholar 

  23. Denis, S., Dusoulier, L., Dirickx, M., Vanderbemden, P., Cloots, R., Ausloos, M., Vanderheyden, B.: Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields. Supercond. Sci. Technol. 20, 192–201 (2007). https://doi.org/10.1088/0953-2048/20/3/014

    Article  ADS  Google Scholar 

  24. Fagnard, J.F., Elschner, S., Bock, J., Dirickx, M., Vanderheyden, B., Vanderbemden, P.: Shielding efficiency and E(J) characteristics measured on large melt cast Bi-2212 hollow cylinders in axial magnetic fields. Supercond. Sci. Technol. 23, 095012 (2010). https://doi.org/10.1088/0953-2048/23/9/095012

    Article  ADS  Google Scholar 

  25. Gozzelino, L., Minetti, B., Gerbaldo, R., Ghigo, G., Laviano, F., Agostino, A., Mezzetti, E.: Local magnetic investigations of MgB2 bulk samples for magnetic shielding applications. IEEE Trans. Appl. Supercond. 21, 3146–3149 (2011). https://doi.org/10.1109/TASC.2010.2089960

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Kara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, A., Kara, A. Theoretical Study of the Effect of Magnetic Field Sweep Rate and Temperature on Shielding Efficiency in a Bulk Tube-Shaped HTS. J Supercond Nov Magn 33, 3411–3416 (2020). https://doi.org/10.1007/s10948-020-05629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05629-5

Keywords

Navigation